QUEEN MARY'S COLLEGE (A), CHENNAI-4

PG & RESEARCH DEPARTMENT OF CHEMISTRY

M.Sc. CHEMISTRY SYLLABUS

2018-19 Onwards

(CO-K, PO mapping adopted in 2019-20 and implemented from 2021-22 onwards)

CONTENTS

S.No	Title	Page no
1	List of Papers with Credits for the proposed new syllabi (PG)	3
2	Total papers/credits/marks	4
3	Quantification Internal, external and teaching methodology	5
4	Organic Chemistry –I	13
5	Organic Applications of Spectroscopy	19
6	Quantum Chemistry and Chemical Kinetics	24
7	Inorganic Chemistry-I	28
8	Inorganic Chemistry Practicals-I	34
9	Organic Chemistry –II	38
10	Inorganic Chemistry-II	43
11	Organic Chemistry Practicals-II	48
12	Elective-I- Electro Chemistry	52
13	Elective-II- Nanochemistry	57
14	EDE- I- Food Chemistry	61
15	Organic Chemistry – III	66
16	Group Theory, Surface Phenomena and Thermodynamics	71
17	Physical chemistry practicals-III	76
18	Elective-III- Problem Solving in Chemistry	79
19	Elective-IV- Inorganic Chemistry-III	85
20	EDE- II- Chemistry of Engineering Materials	90
21	Organic Chemistry-IV	94
22	Physical Methods and Analytical Techniques	100
23	Physical Methods in Inorganic Spectroscopy	105
24	Analytical Chemistry Practicals -IV	111
25	Elective-V- Dissertation and Viva- Voce	115

S.No	Sem	C/E	Code No.	Title	No. of Credits	Int. Marks	Ext. Marks
S	EMEST	ER - I					
1.	Ι	C	PC5321	Organic Chemistry –I	4	25	75
2.	Ι	C	PC5322	Organic Applications of Spectroscopy	4	25	75
3.	Ι	С	PC5323	Quantum Chemistry and Chemical Kinetics	4	25	75
4.	Ι	С	PC5324	Inorganic Chemistry-I	4	25	75
5.	Ι	С	PC5325	Inorganic Chemistry Practicals-I	4	25	75
SE	EMESTI	ER - II					
6.	II	С	PC5326	Organic Chemistry –II	4	25	75
7.	II	С	PC5327	Inorganic Chemistry-II	4	25	75
8.	II	C	PC5328	Organic Chemistry Practicals-II	4	25	75
9.	II	Е	PE5311	Elective-I- Electro Chemistry	3	25	75
10.	II	Е	PE5312	Elective-II- Nanochemistry	3	25	75
11.	II	E(other discipline)	PD5306	EDE- I- Food Chemistry	3	25	75
SE	MESTE	R - III					
12.	III	С	PC5329	Organic Chemistry – III	4	25	75
13.	III	С	PC5330	Group Theory, Surface Phenomena and Thermodynamics	4	25	75
14.	III	С	PC5331	Physical chemistry practicals-III	4	25	75
15.	III	Е	PE5313	Elective-III- Problem Solving in Chemistry	3	25	75
16.	III	Е	PE5314	Elective-IV- Inorganic Chemistry-III	3	25	75
17.	III	E(other discipline)	PD5307	EDE- II- Chemistry of Engineering Materials	3	25	75
SE	EMESTE	ER - IV					
18.	IV	C	PC5332	Organic Chemistry-IV	4	25	75
19.	IV	С	PC5333	Physical Methods and Analytical Techniques	4	25	75
20.	IV	С	PC5334	1		25	75
21.	IV	С	PC5335	Analytical Chemistry Practicals -IV	4	25	75
22.	IV	Е	PE5315	Elective-V- Dissertation and Viva- Voce 3 25		75	

List of Papers with Credits for the proposed new syllabi (PG)

C- Core; E- Elective; EDE – Other Department Elective

SOFT SKILL SUBJECTS

S.No	Sem	Code	Title	No. of	Int.	Ext.
		No.		Credits	Marks	Marks
1.	Ι	PSS11	Soft Skill-I- Language Lab	2	25	75
2.	II	PSS12	Soft skill-II- Personal Skills	2	25	75
3.	III	PSS13	Soft skill III Social skills	2	25	75
4.	IV	PSS14	Soft skill IV Employability skills	2	25	75
			INTERNSHIP			
1	II		INTERNSHIP		25	75

CHOICE BASED CREDIT SYSTEM FOR PG- 2018-19

Total No of Papers: 27

Total Credits: 91

Type of Paper	No. of Paper	Credits Per Paper	Credits
Core	15	4	60
Core Elective	5	3	15
Other Department Elective	2	3	6
Soft Skill	4	2	8
Internship	1	2	2

- Out of 7 elective papers 5 elective papers will be offered by parent department (II, III and IV Semester)
- The remaining 2 elective papers will be offered to all Other PG students in the college (II and III Semester)

S. No	Core/Elective	Hrs/Week*	No. of Weeks*	Total Hours/
1	Core	06	15	Semester 90
-			1.7	
2	Elective	04	15	60

• *Week - 6 working day order Semester – 15 such weeks

- Number of Units in the syllabus of core papers 05
- Number of Units in the syllabus of elective papers 05
- Maximum marks per paper 100
- Total marks 2200

QUANTIFICATION : END SEMESTER EXAMINATION

QUESTION PAPER PATTERN - M. Sc. CHEMISTRY

(EFFECTIVE FROM ACADEMIC YEAR 2021-2022)

CORE AND ELECTIVE PAPERS

Maximum Marks: 100 (Internal Assessment: 25, External Valuation: 75)

$5 \ge 2 = 10$ marks	$5 \ge 4 = 20$ marks	$3 \ge 15 = 45$ marks
Part – A	Part – B	Part - C

Answer all the questions

Answer all the questions

Answer any 3 questions

Question	Unit
1	Ι
2	II
3	III
4	IV
5	V

Question	Unit
6(a) or 6(b)	Ι
7(a) or 7(b)	II
8(a) or 8(b)	III
9(a) or 9(b)	IV
10(a) or 10(b)	V

Question	Unit
11	Ι
12	II
13	III
14	IV
15	V

INTERNAL EVALUATION METHODOLOGY FOR ALL PROGRAMMES

- Quiz programme
- Periodic class tests
- MCQ type assignments
- Assignments on problem solving (Individual/group)
- Seminars using powerpoint and chemdraw
- Group discussions/Debate/Interactive sessions
- Oral presentation on current topics of interest

QUANTIFICATION OF INTERNAL EVALUATION - PG THEORY

- Minimum 2 Internal tests Average of 2 Test
- Minimum 3 assignments Average of 2 best assignments
- Seminar
- Model Examination for 75 marks reduced to 10 marks

TEST	ASSIGNMENT	SEMINAR	MODEL EXAM	TOTAL	CONTINUOUS INTERNAL ASSESSMENT
10	10	5	75	100	-
	Reduced To				
5	5	5	10		25

PRACTICALS

Maximum Marks : 100

Internal Assessment : 25

External Valuation: 75

Model test for 75 marks reduced to 10 marks

Attendance	Observation	Record	Model	Total
5	5	5	10	25

Practical End
Semester Exam
75

Passing minimum

University Examination 50% Aggregate (CIA+UE) 50% Grade Points and Cumulative Grade Point Average are awarded in the mark sheet

TEACHING METHODOLOGIES ADOPTED FOR THE PROGRAMME

- 1. CHALK TALK
- 2. TEXT BOOK LEARNING
- 3. DIGITAL LEARNING- ONLINE PPT LECTURE NOTES
- 4. VIDEO LECTURE ONLINE YOU TUBE GOOGLE MEET CLASSROOM
- 5. INTERACTIVE SESSIONS
- 6. STUDENT SEMINAR
- 7. LECTURE BY EXPERTS IN FIELD INVITED TALKS
- 8. PARTICIPATORY LEARNING LECTURES IN OTHER INSTITUTIONS

Programme Educational Objective (PEO)

The objective of M.Sc. Chemistry programme is to empower students with requisite skill sets to

- be experts in the subject, eloquent communicators and eminent academicians (PE01)
- be a competent resource with analytical skills and take up key roles in industry (PE02)
- make significant contribution in the field of research (PE03)

Programme Specific Outcome (PSO)

After completing the M.Sc. Chemistry programme, the students will have

- 1. in depth knowledge on advanced concepts in chemistry which will enable them to have careers in industry and research (PSO1 : PO1)
- 2. competence in handling digital tools to broaden their domain knowledge (PSO2 : PO7)

- 3. problem solving skills essential for providing solutions to research problems as well as to excel in competitive examinations (PSO3 : PO3)
- 4. curiosity to analyse the concepts in chemistry (PSO4 : PO4)
- 5. capability to work in teams to achieve a common goal (PSO5 : PO5)
- 6. communication skills and can take active participation in group discussions (PSO6 : PO2)
- exposure to current national and international developments in the field of chemistry (PSO7 : PO9)

Programme Outcome (PO)

The aim of the PG program in Chemistry is to hone the analytical, problem solving and communication skills of students, thereby, making significant contribution to the talent pool in chemistry.

While pursuing the program, there will be abundant scope for students to gain strong foundation in fundamental as well as advanced concepts (**PO1**), improve communication skills (**PO2**), strengthen the problem solving skills (**PO3**), develop sense of enquiry (**PO4**), imbibe team spirit by working in groups (**PO5**), gain leadership attributes (**PO6**), enhance digital skills (**PO7**), reinforce ethical values (**PO8**), broaden their domain knowledge (**PO9**), develop aptitude for lifelong learning (**PO10**). The total correlation of skills for the program is arrived at by assessing the skill levels for each unit on a scale of 3 in which the value of 1, 2, and 3 correspond to low, moderate and strong correlation, respectively. Skill levels below 30 % are not correlated and left blank.

Graduate Attributes for M.Sc. Chemistry Programme

PO1. Disciplinary knowledge and skills : Capability to demonstrate deep knowledge in (i). stereochemistry, reaction mechanisms, reagents for functional group transformations and strategies in asymmetric synthesis and retrosynthesis, heterocyclic compounds, biomolecules, green chemistry, natural products, coordination chemistry, bioinorganic chemistry, organometallic chemistry, main group chemistry, nuclear chemistry, supramolecular chemistry, quantum mechanics, group theory, statistical thermodynamics, polymer and macromolecular chemistry, electroanalytical techniques, electrochemistry, chemical kinetics, solid state chemistry, nanochemistry and problem solving in chemistry. (ii). elucidating structure of organic and inorganic compounds using various spectroscopic techniques. (**PSO1**).

PO2. Skilled Communicator: Ability to express important concepts in a lucid manner through seminars using power point presentations and report writing by applying the methodologies learnt in soft skill courses. (**PSO6**).

PO3. Critical thinker and problem solver: Aptitude, gained through rigorous problem solving sessions in paper titled "Problem solving in chemistry" as well as assignments and quiz programmes, to solve problems and find solutions by critical analysis of concepts. (**PSO3**).

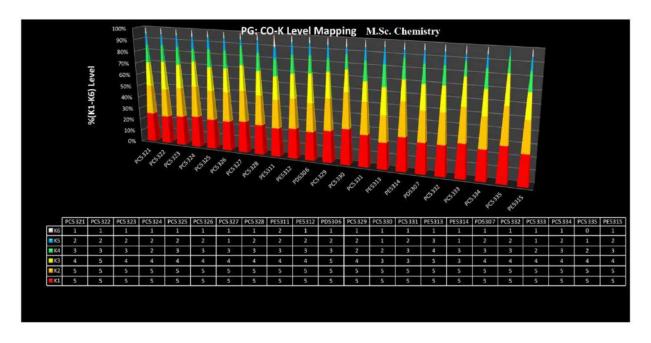
PO4. Sense of inquiry: Skill to put forward inquisitive questions in group discussions and seminars. (**PSO4**).

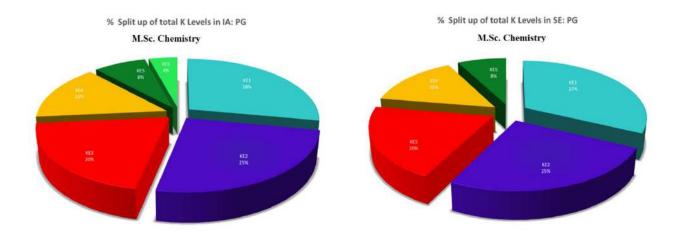
PO5. Team player/worker: Ability to undertake team assignments/work through the experience gained in internship and competitions (**PSO5**).

PO6. Skilled project Manager: Competence to conceive ideas, plan and execute experimental protocols utilising skills acquired during project work.

PO7. Digitally Efficient: Proficiency in using softwares for theoretical calculations in chemistry and drawing structures of compounds (chemdraw), a skill learnt in internship and CLP programmes (**PSO2**).

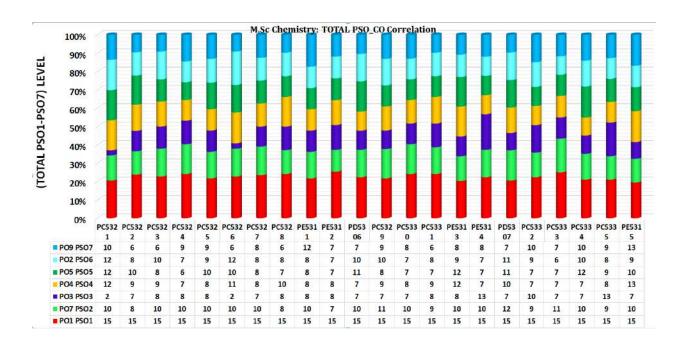
PO8. Ethical awareness / reasoning : Commitment to reinforce ethical and moral standards while practicing science by not resorting to manipulation, fabrication and plagiarism. Consciousness adherence to norms for copy right as well as intellectual property right. These attributes are instilled through course on value education.

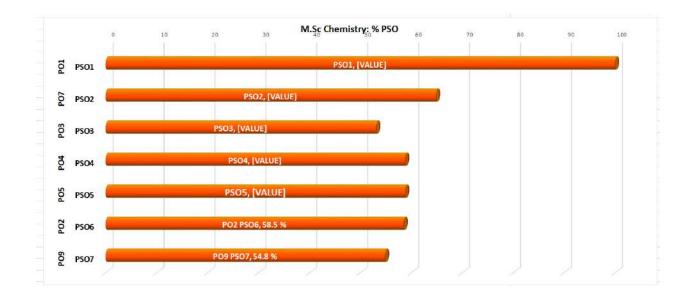

PO9. National and international perspective: Quest to stay updated about current developments in various concepts learnt during the course and in the field of research. Referring e Resources from institutions with national and international reputation, effective usage of INFLIBNET and participation in seminars ensures this attribute (**PSO7**).

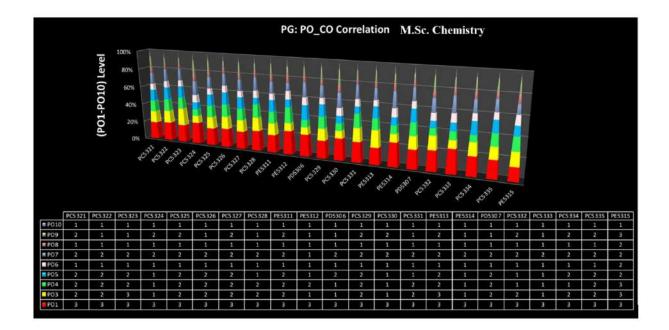

PO10. Lifelong learners: Inclination to pursue a career in the field of chemistry makes students to continuously replenish their domain knowledge

Course Outcome (CO) :

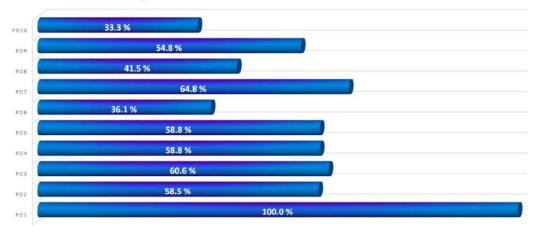
The PG Chemistry curriculum has been designed to impart skills corresponding to 6 knowledge levels, viz., K1, K2, K3, K4, K5 and K6, advocated by Bloom's taxonomy. The curriculum enables students to acquire clear understanding of core concepts in chemistry. The evaluation method comprising of both internal and external assessment ensures the student's ability to apply and analyse advanced concepts. Creative skills are imparted through project work. The knowledge levels are mapped to check their presence or absence.


CO-K Mapping





Note : Kindly refer Appendix for mapping and correlation details of all courses of the program.



QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI – 4 M.Sc. CHEMISTRY ORGANIC CHEMISTRY – I (Core) Semester-I

Paper No. : I Code: PC5321 Max Marks: 75 Credits: 4

Learning Objectives : The aim of the course is to impart understanding about

- 1. the fundamentals of organic chemistry and mechanism of nucleophilic substitution reactions
- 2. the stereochemistry of organic compounds
- 3. the conformational analysis of open chain compounds and cyclohexane ring system.
- 4. the mechanism of addition reaction of alkenes and alkynes
- 5. methods of determining reaction mechanism

COURSE OUTCOMES:K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO.	COURSE OUTCOME	POs
No	Upon completion of the course, students will be able to	Addressed
CO 1	Reactive intermediatesrecall characteristics of carbocations, carbanions, nitrenes, arynes.analyse factors controlling rates of aliphatic nucleophilic substitution reactionsexplain mechanism of ester hydrolysispredict the outcomes of finkelstein and wurtz coupling reactions.https://www.vedantu.com/chemistry/finkelstein-reactionhttps://byjus.com/chemistry/wurtz-reaction/	K1, K4,K2,K3
CO 2	Stereochemistry predict molecular symmetry and chirality of organic molecules. define diastereomers, constitutionally symmetrical and unsymmetrical chiral molecules. illustrate axial, planar, and helical chirality distinguish between enantiotopic/diastereotopic ligands utilize fischer, sawhorse and newmann projections to have stereochemical perspectives of organic compounds. Activity e quiz:chirality,R S notation eResources Three-Dimensional Representations: Sawhorse Projections (chemeddl.org) http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch07/ch7-6.html https://www.youtube.com/watch?v=-Lu_vxcZ4ps	K6, K1, K2,K4,K3

CO 3	Conformational Analysis recognize the relationship between conformation and reactivity of organic compounds. summarise the outcomes of curtin-hammett principle relate stability of acyclic and cyclic systems with conformational analysis compile stable conformations of cis and trans decalins and 9-methyl decalin eResources https://www.masterorganicchemistry.com/2014/08/05/fused-rings/ https://www.metallacycle.com/chemistry/organic/asymmetric- synthesis/pdfs/03%20Conformational%20Analysis.pdf	K1,K2,K3, K5
CO 4	ADDITION REACTION illustrate mechanism of electrophilic, nucleophilic and free radical addition reaction identify the orientation and reactivity of ring opening reactions of cyclopropanes. infer stereochemical aspects of addition reactions. propose reaction conditions for selective 1,2 and 1,4 –addition reactions eResources https://byjus.com/chemistry/michael-addition-mechanism/ https://www.toppr.com/ask/content/concept/stereochemical-aspects-of- nucleophilic-substitution-reactions-ii-203059/	K2 ,K1, K4, K5
CO 5	METHODS OF DETERMINING REACTION MECHANISMS define kinetic and non-kinetic methods of determining reaction mechanisms. classify conditions for kinetic and thermodynamic control of product formation make use of thermodynamic and kinetic aspects. relate structure and activity of set of compounds using hamett and taft equations. Activities Seminar:kinetic and thermodynamic controlled reactions.Transition state vs intermediate eResources Nonkinetic Methods for the Elucidation of Reaction Mechanisms - ScienceDirect https://www.chemistryworld.com/opinion/hammett-equation/4011006.article https://www.slideshare.net/BebetoGNair/methods-of-determining-reaction- mechanisms-andria-dsouza	K1, K2,K3

					PC)				
СО/РО	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	3	3	2	3	1	3	1	2	1
CO2	3	2	2	2	2	1	2	2	2	1
CO3	3	2	2	3	2	1	2	2	2	1
CO4	3	2	1	3	2	1	1	1	2	1
CO5	3	3	2	2	3	1	2	1	2	1
Average PC 5321	3	2	2	2	2	1	2	1	2	1
TOTAL PC 5321	15	12	10	12	12	5	10	7	10	5

Course Outline

UNIT I

REACTIVE INTERMEDIATES

Carbocations, carbanions, radicals, carbenes, nitrenes, arynes – generation, stabilities, identification, trapping and structure.

ALIPHATIC NUCLEOPHILIC SUBSTITUTION

Neighbouring group participation, Substitution at carbonyl, vinylic and bridgehead system. Substitution with ambident nucleophiles. "O" Vs"C"- alkylation. Role of LDA, crown ethers and phase transfer catalyst (PTC) in nucleophilic substitution reactions.

Generation of enolates, enolates selectivity (kinetics Vs thermodynamics), alkylation of enolates and stereochemistry of enolate alkylation. Mechanism of ester hydrolysis (only BAC², AAC², AAL¹). Alkylation of active methylene compounds. Asymmetric alkylation (Evans, Enders and Meyers procedure). Preparation and synthetic utility of enamines, Finkelstein reaction-Wurtz coupling.

(18 hrs)

(13 hrs)

(5 hrs)

15

UNIT II STEREOCHEMISTRY

Introduction to molecular symmetry and chirality; axis, plane, center, alternating axis of symmetry; Configuration and conformational stereoisomers; enantiomers – racemic modifications - R and S nomenclature using Cahn-Ingold-Prelog rules – molecules with a chiral center and C_n – molecules with more than one center of chirality; definition of diastereoisomers; constitutionally symmetrical and unsymmetrical chiral molecules; erythro, threo nomenclature; Fischer, Sawhorse and Newmann Projections and their interconversion.

Axial, planar and helical chirality – examples – stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls, ansa and cyclophanic compounds, spiranes, exo-cyclic alkylidenecycloalkanes.

Topicity and prostereoisomerism – topicity of ligands and faces, and their nomenclature – NMR distinction of enantiotopic/diastereotopic ligands.

UNIT III

CONFORMATIONAL ANALYSIS

Conformational analysis of acyclic and cyclic systems : 1,2 disubstituted ethane derivatives, cyclohexane and its disubstituted derivatives, cyclo hexanols –conformation and reactivity – oxidation, acylation, hydrolysis and esterification – chemical consequence of conformational equilibrium - Curtin-Hammett principle. Conformation and stereochemistry of cis and trans decalins and 9-methyl decalin

UNIT IV

ADDITION REACTION Addition to Carbon-Carbon Multiple Bonds

Mechanism: Electrophilic, nucleophilic and free radical addition

Orientation and reactivity : Stereochemical orientation, addition to cyclopropane rings.

Reactions: Addition of hydro-hydro; halo; hydroxyl; alkoxy, acyloxy, alkylthio, amino, amido, alkyl, acyl, carboxy, carbonyl, allyl groups to double bonds. Addition of dihydro-oxo, dialkyl groups to triple bonds. Addition of boranes, addition of halogen –oxygen, dihydroxy addition, oxyamination, diamination, Michael Addition-using copper, by reaction with electrophiles, with and without copper; Micheal reaction coupled to a photochemical cyclisation, employing

(18 hrs)

(18 hrs)

(18 hrs)

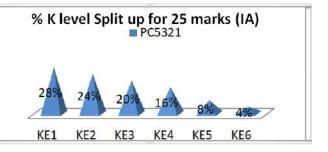
Organolithium, Organomagnesium, Organozinc, Organocopper reagents. Stereochemical aspects of each reaction.

UNIT - V

(18 hrs)

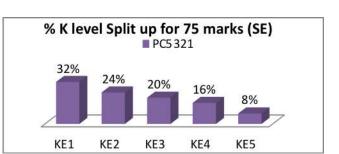
METHODS OF DETERMINING REACTION MECHANISMS

Kinetic and non-kinetic methods of determining reaction mechanisms-Thermodynamic and kinetic aspects-spectroscopic studies - isotope effects – energy profile diagrams – intermediate *vs* transition state – product analysis and its importance – cross over experiments. Relationship between thermodynamic stability and rates of reactions - kinetic versus thermodynamic control of product formation – Hammond postulate - kinetic isotope effects with examples


Quantitative treatment of structure and reactivity – Hamett and Taft equations – Classification of solvents (protic and aprotic), solvent effects in organic chemistry – solute –solvent interactions.

Reference Books

- 1. J. March, Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 6th Ed., Wiley interscience, 2007.
- 2. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, 1st Ed., 2000.
- 3. F. A. Carey and R. J. Sundberg, Advanced Organic Chem., parts A and B. 5th Ed., Springer, 2007.
- 4. Paul Wyatt.Stuart Warren Organic Synthesis- Strategy and Control, Wiley publications, 2013.
- 5. E.L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, John Wiley & Sons, Inc., 2005.
- 6. P. S. Kalsi, Stereochemistry, Conformation and Mechanism, New Age International, 6th Ed., 2006.
- 7. D.Nasipuri, Stereochemistry of Organic compounds, Principles and Applications, 3rd edn, New Age Publishers, 2012.


Р					
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam	
Total (25)	5	5	5	10	
Remember (7)	1	1	2	3	
Understand (6)	1	0	1	4	
Apply (5)	2	2	0	1	
Analyse (4)	0	1	1	2	
Evaluate (2)	1	0	1	0	
Create (1)	0	1	0	0	

CIE-Continuous Internal Evaluation (25 Marks)

PC5321	
Bloom's Taxonomy	Weightage %
Remember	32%
Understand	24%
Apply	20%
Analyze	16%
Evaluate	8%

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI – 4 M. Sc. CHEMISTRY ORGANIC APPLICATIONS OF SPECTROSCOPY (CORE) Semester-I

Paper: II Code: PC5322 Max Marks: 75 Credits: 4

Learning Objectives. The objectives of the course is to

- 1 learn quantization of energy and interaction of electromagnetic radiation with matter.
- 2 understand the fundamentals of different branches of spectroscopy.
- 3 elucidate the structures of organic molecules using different spectral techniques

Course outcomes

K1- Remember K2-understand K3- Apply K4- Analyze K5- Evaluation K6- Create

СО	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addressed
CO-1	IR Spectroscopy:	K1
	Tabulate the Skeletal vibrations and finger print regions – Identify the	K2 K3
	characteristic vibrational frequencies-Interpret structure of organic compounds by	
	combined use of Raman and IR spectra	
CO-2	UV Spectroscopy:	K1
	Describe the types of transitions – Predict λ_{max} using Woodward-Fieser rules –	K2 K3
	Differentiate geometrical isomers and position isomers	
	Explain ORD and CD, Relate axial halo ketone rule and cotton effect.	
CO-3	¹ H NMR Spectroscopy	K1
	Tabulate chemical shift values of various chemically non-equivalent protons- Classify	K2 K3
	the protons bonded to carbon and protons bonded to other nuclei -Explain the types of	K3 K4
	coupling- Simplify complex spectra-Interpret the structure of organic compounds by	K5
	¹ H NMR spectra	
	e-quiz on NMR problems.	
	(e-resources PO9)	
	https://freevideolectures.com/course/4883/nptel-principles-applications-nmr-	
	spectroscopy/1	

	https://freevideolectures.com/course/4140/nptel-nmr-spectroscopy-chemists-biologists	
CO-4	Mass Spectrometry Recall the basic principle, nomenclature and instrumentation- outline common	K1 K2 K3
	functional groups- identify unknown compounds Analyze the mass spectrum –-Seminar on mass spectral fragmentation of organic compounds using PPT(PO2, PO7)	K4
CO-5	 ¹³C and 2D NMR Spectroscopy ¹³C NMR Spectroscopy: Describe isotopic abundance, Summarize Chemical shift, Interpret DEPT spectrum 2D NMR Spectroscopy: Introduction, Compare Homo COSY, C, H-HETCOR and NOESY for simple molecules. Predict the structure of simple moleules by 2D NMR spectra Combine IR, NMR, and Mass spectroscopy for structure elucidation of organic compounds. Assignment on structure elucidation of organic compounds using various spectral techniques followed by group discussion on latest developments in spectroscopy (PO1, PO3, PO4, PO7) e-resources (PO9, PO10) https://freevideolectures.com/course/4272/nptel-multidimensional-nmr-spectroscopy- 	K1 K2 K3 K4 K5 K6
	structural-studies-biomolecules/9	

			РО							
CO/PO	1 Disciplinary knowledge and skills	2 Skilled communicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/worker	6 Skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international perspective	10 Lifelong learners
CO 1	3	1	2	1	2	1	2	1	1	1
CO 2	3	2	1	2	2	1	2	2	1	1
CO 3	3	1	2	2	2	1	1	1	2	1
CO 4	3	2	2	2	2	1	1	2	1	1
CO 5	3	2	2	2	2	2	2	1	1	1
PC5322-	3	2	2	2	2	1	2	1	1	1
AVG										
PC5322-	15	8	9	9	10	6	8	7	6	5
Total										

Course Outline

UNIT - I **IR and Raman Spectroscopy**

IR Spectroscopy : Skeletal vibrations and finger print regions – characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines, carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds) - Effect of Hydrogen bonding and solvent effect on vibrational frequencies – extension to various organic molecules for structural assignment. Vibrational frequency chart for various functional frequencies.

Raman Spectroscopy: Application in organic chemistry – Benzene: ortho, para, meta isomers- cis, trans isomers - structure determination by combined use of Raman and IR spectra

UNIT - II (18 hrs)

UV Spectroscopy

Types of transitions - Woodward Fieser rules - differentiation of geometrical isomers and position isomers (disubstituted benzene derivatives, nitrophenols) conjugated cyclic ketones, acetophenones, esters – study of steric effect in aromatic compounds – steric inhibition of resonance. Solvent effects.

Introduction: ORD and CD, axial halo ketone rule, cotton effect.

UNIT - III

¹H NMR Spectroscopy

Nuclear Magnetic Resonance Spectroscopy: Approximate chemical shift values of various chemically non-equivalent protons and correlation to protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic), Protons bonded to other nuclei (alcohols, phenols, enols, carboxylic acids, amines, amides, SH), effect of deuteration, complex spin-spin interaction between two, three, and four interacting nuclei (first order spectra), Complex interaction, virtual coupling, stereochemically hindered rotation, Karplus curve, variation of coupling constant with dihedral angle, simplification of complex spectra using shift reagents, nuclear magnetic double resonance and Nuclear Overhauser Effect (NOE).

Unit - IV

Mass Spectrometry

Basic principle, instrumentation, nomenclature, Mass spectral fragmentation of organic compounds – common functional groups – molecular ion peaks – meta stable peak – McLafferty

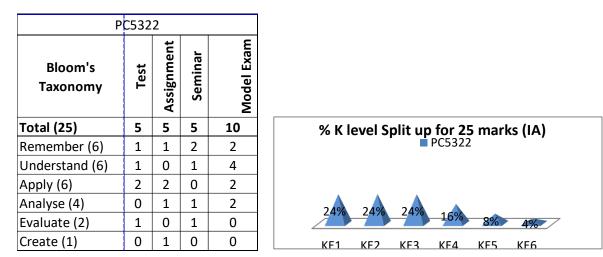
(**18 hrs**)

(18 hrs)

rearrangement – general rules for interpretation of the spectrum – molecular weight, isotope effect, nitrogen rule, ring rule – examples of mass spectral fragmentation of organic compounds with respect to their structure determination, identification of unknown compounds, characterization of polymers based on mass spectrometry.

UNIT - V

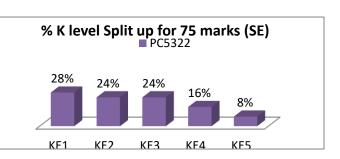
¹³C and 2D NMR Spectroscopy


¹³C NMR Spectroscopy: isotopic abundance, Chemical shift, Applications of IR, NMR, and Mass spectroscopy for structure elucidation of organic compounds. DEPT

2D NMR Spectroscopy: Introduction, Homo COSY, C, H-HETCOR and NOESY for simple molecules.

Reference Books

- R. M. Silverstein, F. X. Webster, and D. Kiemle, Spectroscopic Identification of Organic Compounds, 7th Ed., John Wiley & Sons, 2005.
- 2. R. S. Macomber, A complete introd. to modern nmr spectroscopy, John Wiley & Sons, 1998.
- 3. E. D. Becker, High resolution NMR, 3rd Ed., Academic Press, 1999.
- 4. D. L. Pavia et al., Introduction of spectroscopy, 4th Ed., Brooks Cole, 2008.
- 5. W. Kemp, Organic Spectroscopy, 3rd Ed., McMillan Press Ltd., 1991.
- D. H. Williams & I. Fleming, Spectroscopic Methods in Organic Chemistry, 5th Ed., Tata McGraw Hill, 2004.
- 7. C. N. Banwell & E. M. McCash, Fundamentals of Molecular Spectroscopy, Tata McGraw-Hill, New Delhi, 2006.
- D. Pasto, C.Johnson & M.Miller, Experiments and Techniques in Organic Chemistry, Prentice Hall Inc., New Jersey, 1992
- 9. Barrow, Molecular Spectroscopy, McGraw Hill Book Co., 1962.
- D. N. Sathyanarayana, Vibrational spectroscopy Theory and Applications, Ist Ed., New Age International Ltd., New Delhi.


(18 hrs)

CIE-Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5322	
Bloom's Taxonomy	Weightage %
Remember	28%
Understand	24%
Apply	24%
Analyze	16%
Evaluate	8%

QUEEN MARYS COLLEGE (AUTONOMOUS), CHENNAI – 4 M.Sc. CHEMISTRY QUANTUM CHEMISTRY AND CHEMICAL KINETICS – (Core) Semester-I

Paper: III Code: PC5323 Max Marks: 75 Credits: 4

Learning Objectives: To enable the students to

- understand the need and basics of quantum chemistry
- acquire knowledge about operators and their use in quantum mechanics
- know about the wave nature of particles, Schrodinger equation and is applications
- learn the experimental methods of monitoring reaction kinetics.

Course Outcomes:

At the end of the Course, students will be able to:

CO1 Recall the basic mathematical concepts and extend it to the postulates of quantum	K1,
mechanics; Summarize the breakdown of classical theory and the dawn of quantum	K2,
theory; construct different types of operators; solve Schrodinger wave equation for	M2,
a particle in a 1D box and illustrate the energy levels and wave functions; extend it	K3,
to 3D box systems and examine for degeneracy; list the experimental evidences for	K4,
quantum tunneling.	114,
Activity	K5
Make use of a visual platform as an alternative way of learning the particle in a box	
problem. www.shaziyatambawala.com/particleinabox . [PO1]	
CO2Solve the Schrodinger wave equation for actual chemical systems and relate	K1,
rotational constant with bond lengths, force constant with stiffness of a bond, analyze	K)
rotational transitions and different modes of vibration; compare and contrast	К2,
classical with quantum mechanical results; classify L-S and j-j coupling.	K3,
Activity	K4
Lecture videos with discussion. <u>http://nptel.ac.in/courses/115/101/115101107</u> [PO7]	N 4
CO3 Outline the variation method of approximation to solve He atom wavefunctions;	K1,K2,
compare valence bond theory and LCAO-MO theory for hydrogen molecule; apply	K3
Huckel MO theory to ethylene and 1,3-butadiene. Construct HMO diagram for few	
other conjugated linear polyenes and evaluate their delocalization energy.	K5, K6
https://youtu.be/y_uNDXATy9c [PO2,PO9].	
http://antoine.frostburg.edu/chem/senese/101/quantum/index.shtml	
CO4 Apply spectrophotometric technique to monitor the progress of a chemical reaction;	K1,K2,
Summarize the flow methods of kinetic measurements; explain and distinguish	K3 ,
flash photolysis with relaxation method for various gas phase and liquid phase	
reaction kinetics; solve numerical on temperature dependence of specific reaction rate,	
Arrhenius parameter and relaxation time for different types of reactions. [PO3]	

CO5 Distinguish elementary and complex reactions; define consecutive reactions and	K1,
derive the kinetics; outline the mechanism of steady state approximation and extend it to M-M mechanism; examine the advantages of RRK theory over L-H theory;	К2,
interpret the kinetics of termolecular reactions.	K4
Activity	
seminar with interactive question session and e-Quiz session using	
www.menti.com and www.kohoot.com using a code.[PO4]	

	РО									
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	1	3	2	1	1	2	1	1	1
CO2	3	2	2	2	2	1	3	2	1	1
CO3	3	3	3	1	3	1	1	2	2	1
CO4	3	1	3	1	2	1	3	1	1	1
CO5	3	3	2	3	2	1	1	1	1	1
AVERAGE PC5323	3	2	3	2	2	1	2	1	1	1
TOTAL PC5323	15	10	13	9	8	5	10	7	6	5

Course Outline

UNIT - I

(18 hrs)

Review of essential mathematical concepts, Origin of the Quantum theory. Postulates of quantum mechanics,

Operators: Linear, differential, Hermitian and Hamiltonian operators. Eigen functions and Eigen values – time-dependent and time independent Schrodinger wave equations. Particle in a box (1D, 2D & 3D); degeneracy, QM tunneling.

UNIT - II

Rigid rotator wave equation and solution, calculation of rotational constants and bond length. Harmonic Oscillator: Wave equation and solution, anharmonicity force constant and its significance. Angular momentum - spin coupling and spin-orbit coupling.

UNIT - III

Approximation method - Variation method . Application to the helium atom. Slater determinantal wave functions, Born - Oppenheimer approximation. LCAO - MO and VB treatments of hydrogen molecule. Huckel pi-electron theory and its application to ethylene and butadiene.

UNIT - IV

EMPRICAL CHEMICAL KINETICS - I

Experimental techniques - Monitoring the progress of a reaction spectrophotometry application of the techniques; Fast reactions - flow method - flash photolysis; The rates of reactions – Temperature dependence of reaction rate – Arrhenius parameters – Temperature jump – relaxation methods.

UNIT - V

EMPRICAL CHEMICAL KINETICS – II

Elementary reactions – unimolecular – bimolecular – consecutive elementary reactions – variation of concentration with time – Rate determining step – steady state approximation – Third order reactions - Michaelis - Menton's mechanism - Lindemann - Hinshelwood mechanism - Rice Ramsperger - Kassel theory.

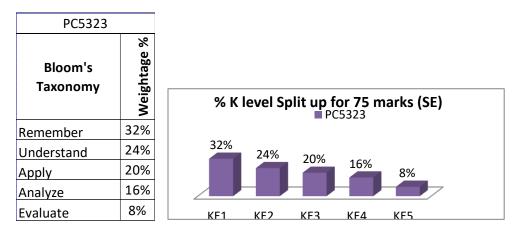
REFERENCE BOOKS:

- 1. Levine, Quantum Chemistry, 4th Ed., Allyn & Bacon Inc., 1983.
- 2. R. K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi. 1997.
- 3. R. P. Rastogi and V.K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems. Oxford & IBH Publishing Co., New Delhi, 1986,
- 4. D. A. McQuarrie, Quantum chemistry, Viva Books Pvt. Ltd., New Delhi, 2007.
- 5. P.W.Atkins, Physical chemistry, Oxford university press, 1978.

(18 hrs)

(18 hrs)

(18 hrs)


(18 hrs)

- 6. K.L.Kapoor, A textbook of Physical chemistry, (volumes-2 and 3) Macmillan India Ltd, 1994.
- 7. K.J. Laidler, Chemical Kinetics, 3rd Ed., Harper and Row Publishers. New York, 1987.
- J.Rajaram and J.C.Kuriokose, Kinetics and Mechanisms of chemical transformation, 1st Ed., Macmilland India Ltd, Delhi, 1993.
- 9. A.A.Frost and R.G.Pearosn, Kinetics and Mechanism, 2nd Ed., John Wiley and Sons, 1963.
- 10. K.B. Ytsimiriski, Kinetic Methods of Analysis, Pergamon press, 1996.
- A.K. Chandra, Indtroductory Quantum Chemistry, 3rd edition, Tata Mc.Graw Hill Publishing Company Limited, New Delhi.
- 12. James E.House, 2nd edition, Fundametals of Quantum chemistry, Elsevier Academic Press, 2008.

F	PC532	3		
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam
Total (25)	5	5	5	10
Remember (7)	1	1	2	3
Understand (6)	1	0	1	4
Apply (5)	2	2	0	1
Analyse (4)	0	1	1	2
Evaluate (2)	1	0	1	0
Create (1)	0	1	0	0

CIE- Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage %)

QUEEN MARYS COLLEGE (AUTONOMOUS), CHENNAI – 4 M.Sc. CHEMISTRY INORGANIC CHEMISTRY-I- (Core) Semester –I

Paper: IV Code: PC5324 Max Marks: 75 Credits: 4

Learning Objectives

- 1 To understand the need for non aqueous solvents and the fundamental concepts of hard and soft acids and bases.
- 2 To gain thorough knowledge about the crystal field and molecular orbital theories of Coordination complexes.
- 3 To facilitate an in depth study about the stereochemical aspects of Inorganic complexes.
- 4 To acquire knowledge about photochemical reactions in Inorganic complexes and the role of photocatalysts.

Course Outcomes

K1 - Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluation, K6 - Create

CO	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addressed
CO-1	Attain knowledge about various non aqueous solvents.	K1
	Understand the relation of electronegativity of acids and bases with their	K2
	hardness and softness	K3
	Differentiate acids and bases based on HSAB concept.	
	Activity	
	e-quiz on HSAB concept and non aqueous solvents.(PO3,PO4)	
	Assignment given in identify the hard & soft acids and bases and group	
	discussion is conducted to assess the understanding of HSAB concept.	
	(PO7)	
	https://www.slideshare.net/sirodjudin908/hsab-theory-53408419 (PO9)	
CO-2	Know about the magnetic properties of transition metals, actinides and	K1
	lanthanides.	K2
	Explain the magnetic susceptibility of complexes.	K3
	Compare the different types of magnetic behaviour of coordination complexes.	K5
	Interpretation of charge transfer spectra based on spectrochemical series and	K6
	nephelauxetic series	
	Hypothesise the nature of complexes based on magnetic behaviour.	
	Activity	
	Seminar on CFSE applications, spectrochemical series and related problems	

		1
	followed by group discussion to assess capability of solving problems (PO1, PO3, PO4, PO5, PO7)	
	https://www.slideshare.net/chemsant/coordination-chemistry-cft	
	https://www.slideshare.net/chemsant/electronic-spectra-of-metal-complexes1	
	nephlauxtic series (PO9)	
CO-3	Recall the basic concepts of coordination complexes	K1
	Explain MOT of Oh, Td and square planar complexes	K2
	Compare of VBT, CFT, LFT and MOT of bonding in Oh complexes	K3
	Calculate CFSE	K5
	E resources	_
	https://www.scribd.com/presentation/382956365/Inorganic-Chemistry-VBT-	
	and-CFT-and-MOT-theories	
	https://www.slideshare.net/kelemuhonja/1-organometallic-chemistry(PO9)	
	j	
CO-4	Calculate the stability constant of the complexes	K1
	Explain factors influencing stability of complexes	K2
	Know about the macrocyclic ligand	K3
	Compare the relative stability complexes	K4
	E resources	
	https://www.slideshare.net/abudardazilli/schiff-base-ligand schiff base stability	
	of complexes	
	https://www.slideshare.net/SekharDas6/crown-ether-and-cryptand	
	(PO9)	
CO-5	Describe various photochemical reactions	K1
	Classify the photochemical reactions and chemical reactions.	K2
	Explain the applications of various photocatalysts	K4
	Assignment given in various applications of photochemical reactions(PO1)	
	Activity	
	Eresources	
	Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO ₂ thin films \pm	
	David A. Bennett, ^a Matteo Cargnello, ^{‡^b} Thomas R. Gordon, ^b Christopher B.	
	Murray ^{bc} and John M. Vohs* ^a	
	https://doi.org/10.1039/C5CP02307F	
	(PO9)	

						PO				
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	2	2	2	1	1	2	1	1	1
CO2	3	2	2	2	2	1	2	1	2	1
CO3	3	1	1	1	1	1	2	1	2	1
CO4	3	1	1	1	1	1	2	1	2	1
CO5	3	1	1	1	1	1	2	1	2	1
PC5324-AVG	3	1	1	1	1	1	2	1	2	1
PC5324- TOTAL	15	7	7	7	6	5	10	5	9	5

Course Outline

UNIT – I

(18hrs)

NON-AQUEOUS SOLVENTS:

Factors justifying the need of Non Aqueous solution Chemistry and failure of water as a Solvent. Solution chemistry of Sulphuric acid: Physical properties, Ionic self dehydration in H_2SO_4 , high electrical conductance in spite of high viscosity, Chemistry of H_2SO_4 as an acid, as an dehydrating agent, as an oxidizing agent, as an medium to carry out acid-base neutralization reaction and as a differentiating solvent. Liquid BrF_3 : Physical properties, solubilities in BrF_3 , self ionization, acid base neutralization reactions, solvolytic reactions and formation of transition metal fluorides. Chemistry of Molten salts as Non-Aqueous Solvents: Solvent properties, solution of metals, complex formation, Unreactivity of molten salts, Low temperature molten salts.

HSAB concept of acids and bases -acid, base strength and hardness and softness - symbiosis – Relation of electronegativity of acids and bases with their hardness and softness.

UNIT – II

COORDINATION CHEMISTRY – I

Crystal field theory and its application to explain magnetic properties of coordination compounds, octahedral vs tetrahedral complexes, Jahn-Teller effect, Interpretation of electronic spectra including charge transfer spectra: spectrochemical series, nephelauxetic series: magnetic properties of lanthanides and actinides and splitting of d-orbitals in octahedral field.

Magnetic properties and Electronic structure of Transition Metal Complexes: Brief review of different types of magnetic behavior, spin-orbit coupling, quenching or orbital angular momenta, temperature-independent para magnetism, measurement of magnetic susceptibility using Guoy and Faraday methods..

UNIT – III

COORDINATION CHEMISTRY – II

MOT: MOT σ – bonding and π - bonding in Oh complexes effect of π – bonding on the value of 10 Dq of Oh complexes spectrochemical series 18 e- rule in terms of MOT, MOT for the square planar (16 e- rule) and Td (18 e- rule)complexes –comparison of VBT, CFT, LFT and MOT of bonding in Oh complexes.

UNIT-IV

STABILITY OF COMPLEXES

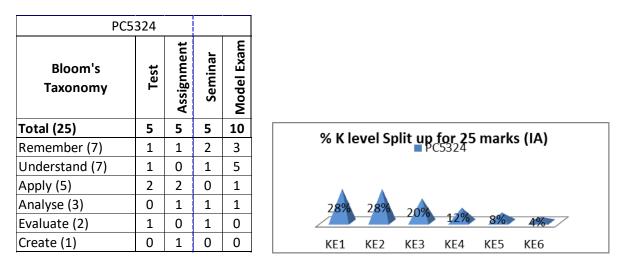
Stability and Stereo chemical Aspects Stability of complexes - thermodynamic aspects of complex formation, factors affecting stability, stability correlations, statistical and chelate effects; Determination of stability constants - polarographic, photometric and potentiometric methods.Stereochemistry of coordination compounds - stereoisomerism in inorganic complexes, isomerism arising out of ligand distribution and ligand conformation, chirality. Macrocyclic ligand types - porphyrins, corrins, Schiff bases, crown ethers, cryptates and catenands. (simple complexes).

(**18 hrs**)

(18 hrs)

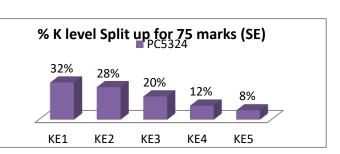
UNIT-V

PHOTOCHEMICAL REACTIONS:


Photochemical excitation – prompt and delayed reaction photochemical reactions of metal carbonyls, Co(III) complexes, Cr(III) complexes – photolysis of $[M(CN)_8]^{3-}$ and $[M(CN)_8]^{4-}$ (M = Mo, W) in aqueous solution – oxalate complexes $[M(OX)_3]^{3-}$ (M = Fe, Mn, Co), photochemical reactions of Fe(II) and Fe(III) complexes – photochemical substitution process in Pt(IV). Photochemistry of $[Ru(bpy)_3]^{2+}$ photochemical splitting of H₂O - TiO₂ as a green photocatalyst in removing air and water pollutants – photochemical reactions of nitrogen.

REFERENCE BOOKS

- 1. Huheey, J. E.; Keiter, E. A. Keiter, R. L. Inorganic Chemistry; 4th Ed.; Harper and Row, NewYork, 1983.
- 2. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Ed., Wiley Interscience: New York, 1988.
- 3. Purcell, K. F.; Kotz, J. C. Inorganic Chemistry; Saunders: Philadelphia, 1976.
- 4. Moeller, T. Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.
- 5. Shriver, D. F.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry; 3rd Ed.; Oxford University Press: L0ondon, 2001.
- 6. Stout, G. H.; Jenson, L. H. X-Ray Structure Determination, 2nd Ed.; John Wiley & Sons: New York, 1989.
- 7. West, A. R. Solid State Chemistry and its Applications, John Wiley & Sons: New York, 1989.
- 8. Rhodes, G. Crystallography Made crystal Clear; Academic Press Inc.: New York, 1993.
- 9. Hammond, C. The Basics of Crystallography and Diffraction; Oxford University Press; 1997.
- 10.Smart, L.; Moore, E. Solid State Chemistry An Introduction; 2nd Ed.; Nelson ThomesLtd.:Cheltenham, 1996.
- 11.Rohatgi.K.K, Mukherjee, Fundamentals of photochemistry, New age international publishers.
- 12.Arthur Wilson Adamson, Paul D.S Fleischauer, Concepts of Inorganic Photochemistry, John Wiley & Sons Australia, Limited, 1975


13. Asim. K. Das and Mahua Das, Fundamentals concepts of Inorganic chemistry, CBS publishers & Distributors private Ltd.

CIE-Continuous Internal	Evaluation (25 Marks)
-------------------------	-----------------------

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5324	
Bloom's Taxonomy	Weightage %
Remember	32%
Understand	28%
Apply	20%
Analyze	12%
Evaluate	8%

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI-4 M. Sc. CHEMISTRY INORGANIC CHEMISTRY PRACTICAL –I (Core)

Semester-I

Paper-V

Code: PC5325

learning objectives

- 1 To impart the skill in preparations of metal complexes.
- 2 To identify the methodology to estimate a metal ion in the presence of another metal ion.
- 3 To improve the skill in the qualitative analysis of rare metal ions in different groups.
- 4 To identify the methodology to analyse a metal ion in the presence of another metal ion.
- 5 To enable the students in interpreting the spectra of inorganic complexes.

Course Outcomes

K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO No.	Course outcomes Upon completion of the course, students will be able to	POs addressed
CO-1	Demonstrate and describe the preparation of various inorganic complexes.	K3, K2
	Duplicate any known procedure. Webresources	K1
	https://www.academia.edu/RegisterToDownload/BulkDownload https://youtu.be/49z5-Adw9QA (Courtesy) https://youtu.be/r5nehqcvVFk (Courtesy) https://vdocuments.mx/preparation-of-tristhiourea-copper.html	
CO-2	Identify the nature of metals.Select a suitable procedure to separate them.Demonstrate the procedure to separate iron and nickel in given solutionusing volumetric and gravimetric estimation.Compare their result with peer group and improvise their skill.Viva(PO3, PO4)Assessment based on her skill and results produced in the laboratoryWebresourceshttps://byjus.com/chemistry/gravimetric-analysis/	K1 K2 K3, K5 K4

Max. Marks: 75 Credits: 4

	https://www.khanacademy.org/science/ap-chemistry/stoichiometry-and-	
	molecular-composition-ap/limiting-reagent-stoichiometry-	
	ap/a/gravimetric-analysis-and-precipitation-gravimetry	
CO-3	Identify the nature of metals.	K1
	Select a suitable procedure to separate copper and nickel in the given	K2
	solution by volumetric and gravimetric estimation.	
	https://youtu.be/mG273ICRijw	
CO-4	Identify the nature of cations present in the inorganic mixture by	K1
	applying semi micro qualitative analysis.	K3
	Understand the principle behind qualitative analysis.	K2
	Infer the nature of cations present in the mixture by carrying out group separation analysis	K4
	Webresources	
	https://science-	
	blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf	
CO-5	Identify the groups present in the inorganic compounds by interpreting	K1, K2
	their spectra.	
	Predict the spectral features	K3
	Examine the spectra of any unknown compound.	K4
	Compile spectral data and propose its structure.	K5, K6
	Group Activity (PO5)	
	Elucidating (PO3, PO4) the structure of inorganic compounds by	
	analysing sets of spectra for each compound through group discussion and	
	presenting the results through written format.	
	Viva (PO3,PO4)	
	Web resources (PO9,PO10)	
	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Book%3A_	
	Introduction_to_Organometallic_Chemistry_(Ghosh_and_Balakrishna)/1	
	2%3A_Physical_Methods_in_Organometallic_Chemistry/12.01%3A_Cha	
	racterization_of_Organometallic_Complexes	

	РО									
СО/РО	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	1	1	1	2	1	2	1	3	1
CO2	3	2	3	2	2	1	2	2	3	1
CO3	3	1	1	1	2	1	1	1	1	1
CO4	3	3	2	2	2	1	3	2	1	1
CO5	3	2	2	2	2	1	2	1	1	1
PC5325-AVG	3	2	2	2	2	1	2	1	2	1
PC5325-TOTAL	15	9	9	8	10	5	10	7	9	5

Course Outline

1. Inorganic Preparations

- 1. Preparation of Tris(thiourea) copper(I) sulphatedihyrade
- 2. Preparation of hexammine nickel(II) chloride
- 3. Preparation of cis-potassium bis(oxalato) diaquochromate(III)
- 4. Preparation of trans-potassium bis(oxalate) diaquochromate(II)
- 5. Preparation of sodium hexanitrocobaltate(III)
- 6. Preparation of Bis(acetylacetonato) copper(II)

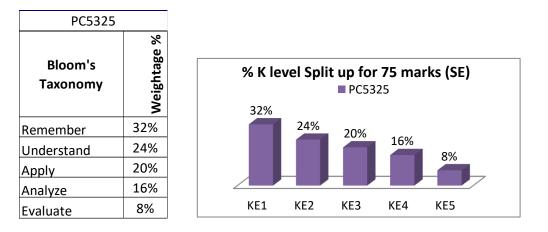
2. Inorganic Estimations.

- 1. Estimation of copper volumetrically and nickel gravimetrically
- 2. Estimation of copper volumetrically and zinc gravimetrically
- 3. Estimation of iron volumetrically and nickel gravimetrically
- 4. Estimation of iron volumetrically and magnesium gravimetrically

*3. Semi micro qualitative analysis

Analysis of cations containing less familiar elements- tungsten. Selenium, tellurium. Molybdenum, cerium, thorium, zirconium, vanadium, uranium and lithium.

*4. Identification of inorganic compounds from spectral data


*Experiments only for Internal assessment

REFERENCE:

- 1. Inorganic Quantitative Analysis- A. Vogel
- 2. Inorganic preparations A. King.
- 3. V.V.Ramanujam Inorganic Semimicro Qualitative Analaysis, 3rd Ed. The National Publishing Co. Chennai 1974.
- 4. Woolins. J D. Ed., Inorganic Experiments; VCH. Weinheim, 1994
- 5. Pass, G. Sutcliffe, H., Practical Inorganic Chemistry, Chapman Hall, 1965.
- 6. Palmer, W. G. Eperimental Inorganic Chemistry, Cambridge University Press, 1954.
- 7. V.Venkatesan, R.Veerasamy, A.R.Kulandaivelu, Basic Principles of Practical Chemistry. S.Chand and Sons, 2004.

PC5325						
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam		
Total (25)	5	5	5	10		
Remember (7)	1	1	2	3		
Understand (6)	1	0	1	4		
Apply (5)	2	2	0	1		
Analyse (4)	0	1	1	2		
Evaluate (2)	1	0	1	0		
Create (1)	0	1	0	0		

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI – 4

M.Sc. CHEMISTRY-

Organic Chemistry – II Semester- II

Paper No. : VI Code: PC5326 Max Marks: 75 Credits: 4

Learning Objectives

- 1. The target of the course is to impart the mechanism of elimination reaction and the determination of reaction mechanism by using different methods.
- 2. To learn criteria for aromatic and effects of structure on reactivity of organic compounds.
- 3. States the importance of rearrangements in designing the synthesis of organic compounds and provide knowledge on reagents for oxidation reaction and reduction reaction.

COURSE OUTCOMES:K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO. No	COURSE OUTCOME	POs
	Upon completion of course, student will be able to know to	Addressed
CO 1	 classify structural and Stereochemical factors governing E1, E2 and E1cb reactions. define Hoffmann and Zaitsev's rules explain stereochemical outcomes of chelotropic elimination reactions evaluate the application of Bredt's rule. Seminar: Stereo chemical orientation, addition to cyclopropane rings http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/chemistry/organic_chemistry_iii/07.nucleophilic_and_free_radical_addition_reactions_of_alkenes/et/481 1_et_et.pdf https://www.organic-chemistry.org/namedreactions/michael-addition.shtm 	K1,K2,K4, K5
CO 2	Identify and differentiate between activating and deactivating groups. Explain the ortho para and meta directing ability of substituents. Predict the position of attack in aromatic compounds containing ortho directors. Activity E quiz: Aromatic electrophilic substitution reactions https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/ 	K2,K1,K3, K4
CO 3	define rearrangements involving migration to electron-deficient carbon describe Wagner-Meerwein, Dienone Phenol, Demjanov and Wolff	K1,K2,K3

apply Sommelet-Hauser Favorskii, Fries, Stevens, Neber rearrangements to organic synthesis Group discussion:Sharpless asymmetric, Jacobsen and Shi epoxidation https://pubs.acs.org/doi/10.1021/acs.analchem.1c00533 list reagents for conversion of alcohols to carbonyl compounds use suitable reagents for epoxidation and predict the stereochemistry of products
Group discussion:Sharpless asymmetric, Jacobsen and Shi epoxidation https://pubs.acs.org/doi/10.1021/acs.analchem.1c00533 list reagents for conversion of alcohols to carbonyl compounds
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00533 list reagents for conversion of alcohols to carbonyl compounds
list reagents for conversion of alcohols to carbonyl compounds
use suitable reagants for enovidation and predict the starsachemistry of products
use suitable reagents for epoxidation and predict the stereochemistry of products
in asymmetric epoxidation reactions
CO 4 recommend schemes for asymmetric dihydroxylation of alkenes reactions K1, K3, K
select methods for conversion of alkenes to alcohols/carbonyls without bond K4, K5,K
cleavage. change Alkenes to diols.
construct multistep schemes for synthesis of organic compounds incorporating
various oxidizing agents
Recall reagents for catalytic hydrogenation of carbon carbon multiple bonds
explain regioselectivity of Heterogeneous and Homogeneous hydrogenation
reactions.
CO 5 interpret the outcomes of Birch reduction reactions. K1,K2,K
Power point presentation: Birch reduction, Lindlar's catalyst and samarium
reagents
https://pubs.rsc.org/en/content/articlelanding/2020/cs/d0cs00835d

Strongly correlated - Moderately correlated 3 -2

Weakly correlated -1

					PC)				
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	3	1	2	3	1	2	1	1	1
CO2	3	2	2	2	2	1	2	2	2	1
CO3	3	2	2	2	1	1	2	1	1	1
CO4	3	2	2	2	2	1	2	1	1	1
CO5	3	3	1	3	2	1	2	1	1	1
AVG PC5326	3	2	2	2	2	1	2	1	1	1
TOTAL PC5326	15	12	8	11	10	5	10	6	6	5

Course outline

UNIT-I

ELIMINATION REACTION

Structural and Stereochemical factors governing E1, E2 and E1cb reactions, Reactivity, Orientation of the double bond: Hoffmann, Zaitsev's and Bredt's rule, Mechanisms and orientation in pyrolytic elimination. Chelotropic elimination, Decomposition of cyclic azo compounds, β -eliminations involving cyclic transition states such as sulfoxides, selenoxides, N-oxides, acetates, xanthates eliminations.

UNIT – II

AROMATIC ELECTROPHILIC & NUCLEOPHILIC SUBSTITUTION REACTIONS

 S_E1 , S_E2 reaction mechanism, Arenium ion mechanism, ortho/para ratio; orientation and reactivity in monosubtituted benzene rings and benzene rings with more than one subtituent; Ortho directing reactions (i) using lithium: ortho lithiation - directing groups containing oxygen, nitrogen, several lithiation ; (ii) halogens , (iii) alpha lithiation and (iv) lateral lithiation and halogens, multiple directed lithiations, several lithiations, Von Richter rearrangement.

UNIT III REARRANGEMENTS

Rearrangements involving migration to electron-deficient carbon: Wagner-Meerwein, Dienone Phenol, Demjanov and Wolff rearrangements. Rearrangements involving migration to electron-rich carbon: Sommelet-Hauser Favorskii, Fries, Stevens, Neber.

UNIT - IV

REAGENTS FOR OXIDATION

Alcohols to carbonyls: Chromium based reagents - CrO_3 in H_2SO_4 , Jone's reagent, PCC, PDC, and Collin's reagent; Manganese based reagent - MnO_2 ; Ruthenium based reagents - TPAP, NMO; Hypervalent iodine reagents - DMP and IBX; Silver based reagents - Fetizon's reagent; DMSO based reagents - Swern, Pfitzner Moffatt oxidation; TEMPO.

Alkenes to epoxides: Sharpless asymmetric epoxidation, Jacobsen epoxidation, Shi epoxidation. Alkenes to diols - OsO₄. KMnO₄,Sharpless asymmetric dihydroxylation, Prevost reaction and Woodward modification,

(18 hrs)

(18 hrs)

(18 hrs)

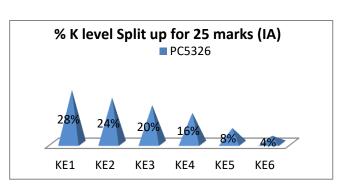
Alkenes to carbonyls with bond cleavage - $KMnO_4$, OsO_4 & $NaIO_4$, Ozonolysis Alkenes to alcohols/carbonyls without bond cleavage - hydroboration-oxidation, Wacker oxidation, SeO_2 based allylic oxidation.

Ketones to ester/lactones - Baeyer-Villiger

UNIT - V

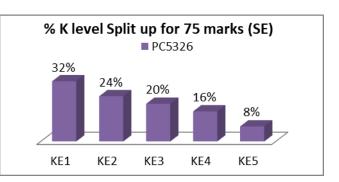
(18 hrs)

REAGENTS FOR REDUCTION


(1) Catalytic hydrogenation Heterogeneous: Palladium/Platinum/Rhodium/Nickel etc; Homogeneous: Wilkinson (2) Metal based reductions Birch reduction, Lindlar's Catalyst, and Samarium reagents.

(3) Hydride transfer reagents from Group III and Group IV in reductions : LiAlH₄, LiAlH(OR)₃, DIBAL-H, and Red-Al; NaBH₄, LiBH₄, Zn(BH₄)₂, L-selectride, K-selectride, NaBH₃CN, NaBH₃CN & NH₂NHTs, Luche reduction, and Bu₃SnH.

Reference Books


- 1. J. March, Ad. Org. Chem.; Reactions, Mech. and Structure, 6th Ed., Wiley Intersci., 2007.
- 2. J. D. Coyle, Organic Photochemistry, Wiley, 1985.
- 3. J. M. Coxon, B. Halton, Organic Photochem., Cambridge University Press, 2nd Ed., 1987.
- 4. J. Clayden, N. Greeves, S. Warren and P. Wothers, Org. Chem., oxford University Press, 1st Ed., 2000.
- 5. F. A. Carey and R. J. Sundberg, Advanced Org. Chem., parts A and B. 5th Ed., Springer, 2007.
- 6. I. L. Finar, Organic Chemistry, Vol.II, 5th Ed., Pearson, 2009.
- 7. Jie Jack Li, Name reactions. A collection of detailed reaction mech., 4th Ed., Springer, 2009.
- 8. B. P. Mundy, M. G. Ellerd, F. G. Favaliro, Advanced organic chemistry 2nd Ed., Wiley, 2005.
- 9. L. Kurti B. Czako, Strategic Appl. of Named Reactions in Org. Syn., Elsevier Academic Press, 2005.
- 10. A. Hassner, C. Stumer, Org. Syn. Based on Name and Unnamed Reactions, Elsevier Sci. Ltd., UK, 1994.
- 11. G. Brahmachari, Org. Name Reactions: A Unified approach, Alpha Science Intl. Ltd., 2006.

PC5326								
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam				
Total (25)	5	5	5	10				
Remember (7)	1	1	2	3				
Understand (6)	1	0	1	4				
Apply (5)	2	2	0	1				
Analyse (4)	0	1	1	2				
Evaluate (2)	1	0	1	0				
Create (1)	0	1	0	0				

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5326	
Bloom's Taxonomy	Weightage %
Remember	32%
Understand	24%
Apply	20%
Analyze	16%
Evaluate	8%

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI-4 M. Sc. CHEMISTRY INORGANIC CHEMISTRY - II SEMESTER II

Paper No. : VII Code: PC5327 Max Marks: 75 Credits: 4

Learning Objectives

- 1. To study in detail about the reaction mechanism in reactions involving transition metal complexes.
- 2. To provide knowledge on different types of electron transfer reactions and their importance.
- 3. To impart knowledge about the fundamentals of Organometallic compounds and the different types of ligands.
- 4. To provide an exposure to organo metallic complexes involving sigma and pi bonded ligands and a knowledge of metallocenes.
- 5. To make students aware of the revolution created by transition metal complexes in the field of catalysis.

Course Outcomes

K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

СО	Course outcomes	POs
No.	Upon completion of the course, students will be able to	address
		ed
CO-1	Define and Compare hydrolysis and anation reaction, Labile and inert reaction.	K1
	Illustrate the mechanism of substitution reactions.	K2
	Choose the correct route to synthesise the substituted square planar complex with the help of	K3
	trans effect. Assignment on preparation of cis and trans square planar complex using trans effect. (PO1,	K5
	PO2, PO3, PO4)	
	e-Resouce: (PO9)	
	https://nptel.ac.in/courses/104/105/104105033/	
	https://chem.yonsei.ac.kr/chem/upload/CHE3103-01/122447755644547.pdf	
	https://authors.library.caltech.edu/25028/1/Langford_Lsp.pdf	
CO-2	Describe the complementary and non- complementary reactions. Discuss and Differentiate the	K1
	electron transfer mechanism.	K2
CO-3	Recognize the type of ligands and Organometallic compounds and Discuss (K2) their	K1
	synthetical applications.	K2
	Explain the effect of solvents and steric effect on the substitution reaction.	K3
	Distinguish Fisher and Schrock carbenes and carbynes.	K4
	e-Resouce: (PO9)	

	https://nptel.ac.in/content/storage2/courses/104106064/lectures.pdf					
	https://nptel.ac.in/courses/104/108/104108062/					
	https://www.sscasc.in/wp-content/uploads/downloads/Chemistry/Inorganic-Chemistry.pdf					
CO-4	State and the pi bound ligands in organometallic compounds.	K1				
	Discuss the reactivity and uses of metallocenes.	K2				
	Illustrate and Distinguish insertion and deinsertion reaction, carbonylation and	K3				
	decarbonylation.	K4				
	eQuiz – Organometallic compounds (PO3, PO4, PO7)					
CO-5	-5 Define Catalyst and catalysis. Discuss the mechanistic steps in the catalyzed reactions.					
	Use of Organometallic catalyst in the Industry.					
	Compare the role of OMC catalyst with the others.					
Develop a catalyst which is useful for the production of organic compounds from easily						
	available sources					
	Seminar on the basic reactions involved and some basic catalyst. (PO2,PO7)					
e-Resource: (PO9)						
	https://www.ias.ac.in/public/Volumes/reso/004/09/0063-0081.pdf					
	https://nptel.ac.in/content/storage2/courses/104103022/download/module11.pdf					

					PC)				
СО/РО	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	2	2	1	2	1	2	1	2	1
CO2	3	1	1	2	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	2	1
CO4	3	1	2	2	2	1	3	1	1	1
CO5	3	2	2	2	2	1	3	1	2	1
PC5327- AVG	3	2	2	2	2	1	2	1	2	1
PC5327- TOTAL	15	8	8	8	8	5	10	5	8	5

Course outline

INORGANIC REACTIONS AND MECHANISM:

Substitution reactions in octahedral complexes- general mechanism, discussion of A, D, IA, ID and DCB mechanism, replacement of coordinated water, acid hydrolysis reactions, base hydrolysis and anation reactions, substitution reaction, reactions occurring without rupture of metal-ligand bond. Substitution reactions of square planar complexes. Theories of trans-effect, labile and inert complexes. Mechanism of redox reactions.

UNIT-II

ELECTRON TRANSFER REACTIONS

Inner sphere (ISET) and outer sphere (OSET) electron transfer reactions – OSET: steps of OSET – electron transfer and Frank Condon principle – potential energy diagram for ET process – the Marcus eqn for OS cross – reaction nature of donors and receptors MO in OSET process – important factors to control the rate constants of OSET reactions – effect of external ions as ET rate in OSET process.

ISET: Steps of ISET process – rate law for the ISET process – effect of the native (HOMO) of donor and (LUMO) of the receptor orbitals in the ISET process Comparison of reaction rates for the reduction of Co(III) complexes by $[Cr(OH)_6]^{2+}$ through the OSET and ISET processes – types of ISET – effect of the nature of HOMO of the reductant and LUMO of the oxidant on the rate of 1S reaction – role of bridging ligand with ISET reaction – tunneling transfer, resonance transfer – multiple bridging in the activated complex in the ISET process – effect of the non-bridging ligand on the rate of ISET & OSET processes – ligand replacement reactions through ET – non-complementary ET reaction.

$\mathbf{UNIT} - \mathbf{III}$

(18hrs)

ORGANOMETALLIC CHEMISTRY - I

Transition Metal Alkyls and Aryls, Related σ -Bonded Ligands, Metal Hydride Complexes, σ - *c*omplexes, Bond Strengths for Classical σ -Bonding Ligands.

Carbonyls, Phosphine complexes and ligand substitution reactions: Metal complexes of CO, RNC, CS, NO, Phosphines and related ligands, Dissociative substitution, Associative

(18 hrs)

mechanism, Redox effects- mechanism and rearrangement. Substitution – photochemical substitution, steric and solvent effects in substitutions.

Metal-ligand multiple bonds; Carbenes, Carbynes, Bridging carbenes, carbynes, N-Heterocyclic Carbenes, multiple bonds to heteroatoms, applications – Alkene Metathesis,

$\mathbf{UNIT} - \mathbf{IV}$

(18hrs)

ORGANOMETALLIC CHEMISTRY - II

Complexes of π -Bound Ligands: Alkene and Alkyne Complexes, Allyl Complexes, Diene Complexes, Cyclopentadienyl Complexes, Arenes and other Alicyclic Ligands, Metalacycles and Isoelectronic and Isolobal replacement, Stability of Polyene and Polyenyl Complexes.

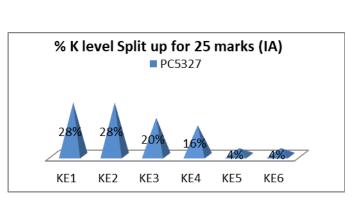
Insertion and elimination reactions involving CO, Insertions involving alkenes, alpha beta and omega elimination

Cyclopentadienyl complexes - metallocenes - synthesis of metallocenes - bonding in metallocenes - reactions of metallocenes - Cp2Fe/Cp2Fe⁺ couples in biosensors - bent sandwich complexes - bonding in bent sandwich complexes - metallocene halides and hydrides - metallocene and stereospecific polymerisation of 1-alkenes - cyclopentadiene as a non-spectator ligand.

UNIT-V

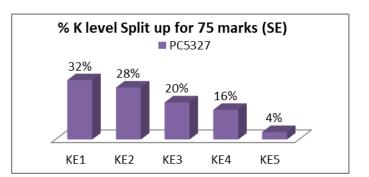
(18 hrs)

CATALYSIS BY TRANSITION METAL COMPLEXES


General principles of catalysis - basic reactions involved in the catalysis by organometallic compounds – Tolman catalytic loops – catalytic mechanism in the following reactions: hydrogenation of olefins (Wilkinson's catalyst) – hydroformylation (oxo process) – Monsanto acetic acid synthesis from methanol – oxidation of alkenes to aldehydes and ketones (Wacker process) – catalysis in the formation of synthesis gas (syn gas) – homologation – water gas shift reaction (WGSR) – synthetic gasoline by using ZSM – 5 catalyst (Fisher – Tropsch and mobil process – political process) – cyclooligomerisation of acetylenes (Reppe's orWilke's catalyst) – olefin isomerisation using Ni catalyst – olefin metathesis catalysed by Schröck type carbene – catalytic deuteration of benzene.

Reference Books

- 1. Huheey, J. E.; Keiter, E. A. Keiter, R. L. Inorganic Chemistry; 4th Ed.; Harper and Row, NewYork, 1983.
- Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Ed., Wiley Interscience: New York, 1988.
- 3. Purcell, K. F.; Kotz, J. C. Inorganic Chemistry; Saunders: Philadelphia, 1976.
- 4. Moeller, T. Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.
- 5. Shriver, D. F.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry; 3rd Ed.; Oxford University Press: L0ondon, 2001.
- Arthur Wilson Adamson, Paul D.S Fleischauer, Concepts of Inorganic Photochemistry, John Wiley & Sons Australia, Limited, 1975.
- 7. Asim. K. Das and Mahua Das, Fundamentals concepts of Inorganic chemistry, CBS publishers & Distributors private Ltd.


PC5327								
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam				
Total (25)	5	5	5	10				
Remember (7)	2	1	3	1				
Understand (7)	1	0	1	5				
Apply (5)	2	2	0	1				
Analyse (4)	0	1	1	2				
Evaluate (1)	0	0	0	1				
Create (1)	0	1	0	0				

CIE-Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5327	
Bloom's Taxonomy	Weightage %
Remember	32%
Understand	28%
Apply	20%
Analyze	16%
Evaluate	4%

QUEEN MARY'S COLLEGE (AUTONOMOUS), CHENNAI – 4 M. Sc. CHEMISTRY ORGANIC CHEMISTRY PRACTICAL- II (Core) Semester-II

Paper: VIII Code: PC5328 Max Marks: 75 Credits: 4

Learning Objectives

The target of the course is to develope analytical skill in

- 1 separation and identification of components in organic mixture.
- 2 interpretation of spectral data of organic compounds and determine the structure.
- 3 preparations of organic compounds involving two stages.
- 4 Estimating the amount of organic compounds in solution.

Course Outcomes : K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

СО	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addressed
CO-1	Identify the nature of the two components in an organic mixture by	K1
	solvent extraction method.	K2
	Understand the principle behind solvent extraction method	K3
	Infer the nature of functional group in the organic compound by carrying	K4
	out chemical reactions.	
	Separate the components in a given organic mixture.	
	Viva (PO3, PO4)	
	Web resources (PO9)	
	https://www.youtube.com/watch?app=desktop&v=Tn0P2x0X_vs	
	http://amrita.olabs.edu.in/?sub=73&brch=2∼=96&cnt=207	
CO-2	Identify the functional groups present in organic compounds by	K1
	interpretting their spectra.	K2
	predict the spectral features of organic compounds.	K3
	examine the spectra of any unknown compound, compile spectral data	K4
	and propose its structure.	K5
	Group Activity (PO5)	K6
	Elucidating (PO3, PO4) the structures of organic compounds by	
	analysing sets of spectra for each compound through group discussion and	
	presenting the results through powerpoint (PO7)	
	Viva (PO3, PO4)	
	Web resources (PO9, PO10)	
	https://webspectra.chem.ucla.edu//	
CO-3	recollect the procedures for preparation organic compounds and explain	K1

	the principle of organic reactions	K2
	operate various equipments in chemistry laboratory.	K3
	construct experimental set up for various organic reactions.	K5
	Viva (PO3, PO4)	
	Web resources (PO9)	
	https://www.youtube.com/watch?app=desktop&v=oROSQnzSdZE	
CO-4	express the concentration of solutions containing organic compounds	K1
	using standard terms.	K2
	perform titration and analyze solution of unknown concentration.	K3
	estimate the amount of phenol and aniline present in it.	K4
	Viva (PO3, PO4)	
CO-5	state procedure for estimation of glucose	K1
	interpret the results obtained in the experiment	K2

					PO)				
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	2	2	2	1	1	1	1	2	1
CO2	3	2	3	3	2	1	3	1	1	1
CO3	3	2	2	2	1	1	2	1	1	1
CO4	3	1	2	2	2	1	1	1	1	1
CO5	3	1	1	1	1	1	1	1	1	1
PC5328-AVG	3	2	2	2	1	1	2	1	1	1
PC5328- TOTAL	15	8	10	10	7	5	8	5	6	5

Course Outline

Experiments:

1. Separation and identification of components in a two component mixture and preparation of their derivative

2. Identification of organic compounds using spectroscopic data.

3. Synthesis of organic compounds involving two steps.

i. Preparation of phthalimide from phthalic anhydride, preparation of anthranilic acid from phthalic anhydride.

ii. preparation of p-bromo acetanilide from acetanilide, preparation of p-bromoaniline from pbromo acetanilide.

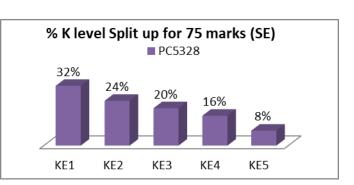
iii. Preparation of p-nitroacetanilide from acetanilide, preparation of p-nitroaniline from p-nitroacetanilide.

iv. Preparation of 2,4,6-tribromoaniline from aniline, preparation of 1,3,5-tribromobenzene from 2,4,6-tribromoaniline.

*4. Quantitative estimation of organic compounds

- (i) Estimation of Aniline.
- (ii) Estimation of Phenol.
- (iii) Estimation of Glucose.

*Experiments only for internal assessment


REFERENCE BOOKS

- 1. N. S. Gnanapragasam and G. Ramamurthy, Organic chemistry Lab manual, S. Viswanathan Co. Pvt. Ltd., 1998.
- 2. J.N. Gurtu and R. Kapoor, Advanced Experimental Chemistry (Organic), S. Chand and Co., 1987.
- 3. Vogel's Textbook of Practical organic chemistry, 5th Ed., ELBS/Longman, Ingland 1996.
- 4. V. Venkatesan, R. Veeraswamy, A. R. Kulandaivelu, basic principles of practical chemistry, S. Chand and Sons, 2004.

PC	C5328	;		
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam
Total (25)	5	5	5	2 10
Remember (7)	1	1	2	3
Understand (6)	1	0	1	4
Apply (5)	2	2	0	1
Analyse (4)	0	1	1	2
Evaluate (2)	1	0	1	0
Create (1)	0	1	0	0

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5328						
Bloom's Taxonomy	Weightage %					
Remember	32%					
Understand	24%					
Apply	20%					
Analyze	16%					
Evaluate	8%					

QUEEN MARYS COLLEGE (AUTONOMOUS), CHENNAI – 4 M.Sc. CHEMISTRY ELECTRO CHEMISTRY – (Elective)

Semester : II

Paper No. : IX Code: PE5311 Max Marks: 75 Credits : 3

Learning Objectives:

- 1. To enable the students to understand the behaviour of electrolytes in solution.
- 2. To understand the structure of electrolyte surface.
- 3. To know the applications of electrode process.

Course Outcomes

K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addre
		ssed
CO-1	Recognise and explain the types of ion-solvent and ion-ion interaction.	K1,
	Calculate the mean activity co-efficient of a uni-univalent dilute solution.	K2
	Assignment on ion-solvent and ion-ion interaction and derivation of its related	K3
	theories in written format.	
	Webresources (PO9)	
	http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000005CH/P000661/M	
	019105/LM/1515648336CHE_P6_M25_Knowmore.pdf	
	https://sci-hub.do/10.1021/jp067133c	
CO-2	Identify and describe diffusion and conduction	K1,
	Apply the concept of ionic atmosphere to infer the equivalent conductance value	K2
	of an electrolyte using Debye-Hukel Onsager equation	K3,
	eQuiz (PO3, PO4)	K4
	webresources (PO9)	
	https://nptel.ac.in/content/storage2/courses/113104005/lecture_pdf/module3.pdf	
	https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Tex	
	tbook Maps/DeVoes_Thermodynamics_and_Chemistry/10%3A_Electrolyte_Solu	
	tions/105_Derivation_of_the_DebyeHuckel_Theory	

CO-3	Identify and explain the electrode electrolyte interface	K1,K
	Construct electrical double layer with a suitable electrochemical cell	2
	Criticize the over potential versus current for any electrolyte which involves one	K3
	electron transfer using Butler Volmer equation.	K5
	Webresources (PO9)	
	https://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-	
	systems-spring-2014/lecture-notes/MIT10_626S14_S11lec13.pdf	
	https://nptel.ac.in/content/storage2/courses/downloads_new/113104082/noc20_m	
	m04_assigment_8.pdf	
	http://home.iitk.ac.in/~vidtan/ElectrochemistryNotes/ActivationOverpotential_290	
	<u>615.pdf</u>	
CO-4	Identify and discuss the corrosion and its theories	K1,K
001	Apply the concept of prevention	2
	Analyse and evaluate the quality of product	<u>г</u> К3
	Design corrosion free appliances and various accessories	K4,
	Seminar on functional group transformation by modern reagents using PPT	K5
	(PO2, PO7)	K6
	eResource (PO9):	K 0
	https://nptel.ac.in/courses/113/104/113104082/	
	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Book%3A_Introduct	
	ion to Inorganic Chemistry/04%3A Redox Stability_and Redox Reactions/4.0	
	<u>6%3A_Pourbaix_Diagrams</u>	
	https://www.youtube.com/watch?v=IxZQ-tCO_G4 (Courtesy)	
	https://people.bath.ac.uk/chsataj/CHEY0016%20Lecture%2015.pdf	
<u> </u>		17.1
CO-5	Define and explain kinds of electrode	K1,
	Categorise the electrodes based on its merits and demerits	K2
	Develop a good lead-storage battery	K4
	Seminar followed by group discussion to discuss and criticize the use of different	K6
	cell and lead storage batteries.	
	eResources (PO9, PO10)	
	https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map%3A_Chemi	
	stry_for_Changing_Times_(Hill_and_McCreary)/08%3A_Oxidation_and_Reducti	
	on/8.03%3A_ElectrochemistryCells_and_Batteries	
	https://courses.lumenlearning.com/boundless-chemistry/chapter/batteries/	
	https://youtu.be/OTdnvk-h3cE (courtesy)	
	https://nptel.ac.in/content/storage2/courses/121106014/Week11/lecture34.pdf	

		PO									
	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners	
CO1	3	1	1	1	1	1	1	1	2	1	
CO2	3	1	2	2	2	1	2	1	2	1	
CO3	3	1	1	1	1	1	1	1	2	1	
CO4	3	3	2	2	2	1	3	2	3	1	
CO5	3	2	2	2	2	1	3	2	3	1	
PE5311-AVG	3	2	2	2	2	1	2	1	2	1	
PE5311- TOTAL	15	8	8	8	8	5	10	7	12	5	

Course Outline

UNIT – I

IONIC PHENOMENA IN SOLUTION – I

Born model of ion-solvent interaction, ion-ion interaction, concept of ionic atmosphere. Debye Hukel equation for the mean activity coefficient of electrolytes – verification and experimental validity of the equation. Bjerrum ion pair theory – Bjerrum modification of Debye Hukel equation.

UNIT – II

IONIC PHENOMENA IN SOLUTION –II

Ion association treatment – diffusion – Fick's law of diffusion – Einstein Smolunchowki equation – conduction – Stoke Einstein equation - Plank Henderson equation – influence of ionic atmosphere on conductivity of electrolytes. Debye Huckel Onsager equation for the equivalent conductance of electrolyte – Experimental verification.

(12 Hrs)

(12 Hrs)

UNIT-III

STRUCTURE AND THEORIES OF ELECTRIFIED INTERFACE

The electrode electrolyte interface – electrical double layer – electro capillary phenomena – Helmholtz – Perrin model, Guoy Chapman diffuse model and Stern model.

Significance of equilibrium – exchange current density and symmetry factor. Butler- Volmer equation for one electron transfer. Electro kinetic phenomena – zeta potential – Tisselius method of separation of proteins.

$\mathbf{UNIT} - \mathbf{IV}$

(12 Hrs)

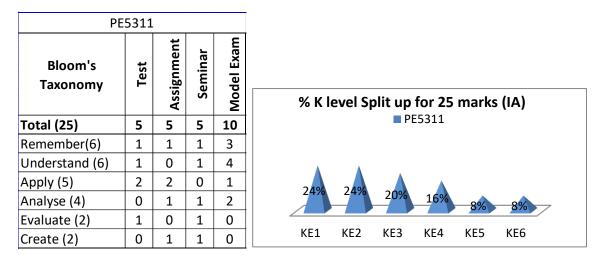
(12 Hrs)

SOME ELECTROCHEMICAL SYSTEMS OF TECHNOLOGICAL INTEREST

Corrosion and the stability of metals. Theories of corrosion – charge transfer reaction of corrosion, short circulate energy producing cell, corrosion of ultrapure metals – corrosion current and corrosion potential. Evans diagrams, potential – pH diagram (Pourbaix diagram) – Prevention of corrosion – electronic approach to the stability of metals.

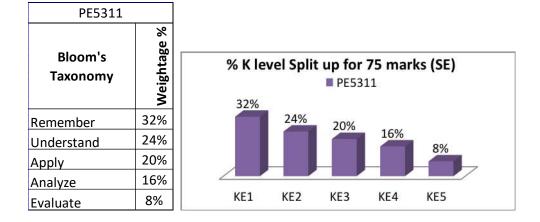
UNIT - V

Electrode, SHE, Dipping calomel electrode, Quinhydrone electrode, glass electrode – merits and demerits. Fuel cells – kinds of fuel cells and their relative merits – electricity storage – Lead storage battery - Lechlanche cell – silver – zinc cell and sodium – sulphur cell.


COURSE OUTCOME

Sound knowledge in the theories and concepts of electrochemistry

REFERENCE BOOKS:


- J.O.M.Bockris and A.K.N.Reddy, Modern Electrochemistry, vol.1&2. Plenum Press, New York, 1970.
- 2. S.Glasstone, Electrochemistry, Affiliated East West Press Pvt. Ltd., New Delhi, 1974..
- 3. L.Andropov, Theoretical Electrochemistry, Mir Publications, Moscow, 1977.

 J. Rajaram and J.C.Kuriakose, Kinetics and Mechnism of Electrochemical Transformations, Macmillan Inida Ltd., New Delhi, 1993.

CIE-Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI – 4 M. Sc. CHEMISTRY-NANO CHEMISTRY (Elective)

Semester- II

Paper No. : X

Code: PE5312

Max Marks: 75

Credits: 3

Learning Objectives

- 1. To acquire knowledge about nanochemistry
- 2. To learn the synthesis of nanomaterials, characterization and applications.

Course outcome: -

K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO No	Course outcomes	POs							
	Upon completion of the course, students will be able to								
CO-1	Recall the Nano revolution of the XX century- Explain basic idea & structure of nanomaterial, Infer properties at Nano scale.								
	PO1 Assignment : Demonstrate basic idea & structure of nanomaterial	K2 K3							
CO-2	Describe top down and bottom up approach. Explain sol-gel process. Illustrate	K1							
	synthesis, purification, properties and uses of CNT. Distinguish metal Nanoparticles, Nanotubes and Nano rods. Hypothesize energy band structure of semiconductor and								
	<pre>quantization effect of nanomaterials. PO9 <u>https://youtu.be/fZlsUFhwpyQ</u> (space elevator)</pre>	K3 K4							
	https://youtu.be/fVCZej5Z5yg	K4 K6							
	https://youtu.be/dlCCNMtoJvk /International University Videos								
CO-3	Recall and explain techniques used for characterization of nanomaterials. Analyse and evaluate nanomaterials using SEM, TEM, HR-TEM (SAED).	K1							
	PO9- https://youtu.be/eXusvz0bI4I	K2							
	https://youtu.be/ksQT1W0cmHE / Hands on training (virtual lab videos)	K4							
	(((K5							

CO-4	Summarize theories and techniques used for characterization of nanomaterials using UV-Visible spectra. Describe and illustrate SPM, AFM, STM, XPS, and XANES techniques.	K1 K2					
	PO5-Industrial/Lab Visit (CLRI, IIT)						
	List applications of nanomaterials in various fields. Describe Solar energy	K1					
CO-5	Conversion and Catalysis. Demonstrate uses of Nano composites, chemical and Nano biosensors. Explain usage of Nano medicine and Nano biotechnology NEMS. Assess	K2					
	pros and cons of nanomaterials in agriculture, as fertilizer, and pesticides.	K3					
	PO5- Group discussion	K4					
		K5					

					PC)				
СО/РО	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO-1	3	1	1	1	1	1	1	1	1	1
CO-2	3	1	2	2	1	1	1	1	2	1
CO-3	3	2	1	1	1	1	1	1	1	1
CO-4	3	1	2	2	2	1	2	1	1	1
CO-5	3	2	1	2	2	1	2	1	2	1
PE5312- AVG	3	1	1	2	1	1	1	1	1	1
PE5312- TOTAL	15	7	7	8	7	5	7	5	7	5

Course outline

UNIT - I

FUNDAMENTALS AND OVERVIEW OF NANOSCIENCE

Nano revolution of the XX century-Basic idea of nanomaterials-Structure-Nucleation and grain growth-Grain boundaries, Properties at nanoscale: Strength and Hardness, optical, electrical, magnetic, mechanical and chemical properties.

UNIT - II

SYNTHESIS OF NANOMATERIALS

Top down approach – Nanolithography, Chemical Vapour Deposition (CVD). Bottom up approach - sol-gel processing, chemical synthesis. self assembly-Supramolecular approach. Reverse micelles and role of surfactants, capping of nanoparticles, Synthesis, purification, properties and uses of CNT, metal Nanoparticles. Nano tubes, Nano rods, Bucky balls-fullerenes, Nanofibers, Nanoshells. Semiconductor Nanoparticles - Energy band structure of Semiconductors Quantum dots-Quantization effect.

UNIT - III

CHARACTERISATION OF NANOMATERIALS-I

Theories and Techniques used for characterization-UV-Visible and PL spectroscopy-XRD-Electron microscopes-SEM, TEM, HR-TEM (SAED).

UNIT - IV

CHARACTERISATION OF NANOMATERIALS-II

Theories and Techniques used for characterization SPM, AFM, STM, XPS, XANES.

UNIT - V

APPLICATIONS OF NANOMATERIALS

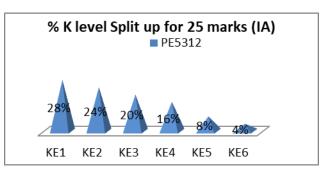
Solar energy conversion and catalysis - Uses of Nanocomposites, chemical and nano biosensors. Nanomedicine and Nanobiotechnology-NEMS. Nanomaterials in bone substitutes and dentistry, drug delivery and its application- nanoparticles in cancer targeting and treatment. Food and cosmetic applications, textiles, paints, Nanotechnology in agriculture, fertilizer and pesticides. Nanoparticles in Pollution control.

(12 hrs)

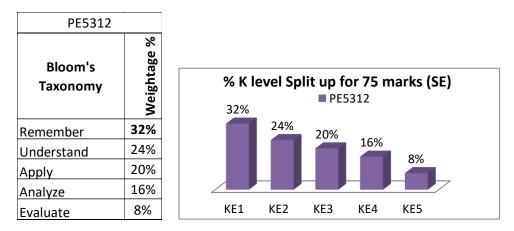
(12 hrs)

(12 hrs)

(12 hrs)


(12 hrs)

Reference Books


- 1. Pradeep, T., "Nano: the Essentials", Tata McGraw Hill, New Delhi, 2007.
- 2. Rao, C.N.R. and Cheetham, A.K., "The chem. of Nanomaterials: Synthesis, Properties and Applications", Wiley-VCH, 2004.
- 3. Hari Singh Nalwa, "Nanostructured materials and Nanotechnology", Acad. press, 2002.
- 4. Charles P. Poole and Frank J. Owens, "Intro. to Nanotechnology" Wiley-Intersci., 2003.
- 5. A.Nanobook, "Organic and Inorganic Nanostructures", Artech House, 2005.
- 6. Sulabha K. Kulkarni, "Nanotech.: Principles and Practices", Capital Publishing Co, 2007.

PE5312								
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam				
Total (25)	5	5	5	10				
Remember (7)	1	1	2	3				
Understand (6)	1	0	1	4				
Apply (5)	2	2	0	1				
Analyse (4)	0	1	1	2				
Evaluate (2)	1	0	1	0				
Create (1)	0	1	0	0				

CIE-Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS), CHENNAI – 4 M. Sc. CHEMISTRY-FOOD CHEMISTRY - (Other Elective) Semester- II

Paper No. : XI Code: PD5306 Max Marks: 75 Credits: 3

Learning Objectives

- 1. To understand the basic concepts in food chemistry
- 2. To understand type of additives added to a food product
- 3. To understand the processing and preservation techniques adopted in a food process.
- 4. To have knowledge in analysis of various content present in food.
- 5. To know the various types of adulterants that may be mixed in a food product.

COURSE OUTCOMES

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluation, K6-Create Upon completion of the course students will be able to.

CO. NO.	COURSE OUTCOMES	POs
		Addressed
CO 1	Identify the basic five groups to which food belongs.	K1
	Compare and Contrast different food groups.	K2
	Use food guide to choose correct food consumption pattern	К3
	Activities .(i) Class tests and (ii) assignments followed by presentation on	
	different food groups (PO1, PO2, PO7)	
	(III) WEB RESOURCES NPTEL	
	http://nptel.ac.in./content/storage2/courses/126104004/Lecture Notes/	
CO-2	List a number of additives added to food for different reasons	K1
	Classify food additives, on the basis of their function.	K2
	Select a suitable additive depending on the need.	K3
	Inspect the functioning of a chosen additive .	K4
	Evaluate and rate the usefulness of an additive.	K5
	Develop a new additive which would increase the value of food	K6
	Activities (i) Class tests and (ii) assignment and seminar on the food	
	additives. (PO1, PO2, PO7)	

	(iii) E-quiz on food additives (PO3)	
	(iv)Group Discussion on food additives. (PO5)	
	(v). NPTEL resource on food processing.	
	http://nptel.ac.in/courses/126/105/126105015/	
CO-3	Recognise the causes of food deterioration	K1
	Illustrate different methods of preservation and processing of food	K2
	Apply a suitable method of preservation for food of interest	К3
	Distinguish between different methods of preservation.	K4
	Activities (i) Class tests and (ii) assignment followed by presentation on different methods of preservation and processing of food (PO1, PO2, PO7) Group discussion on food processing methods. (PO5)	
CO-4	Name the methods available for analysis of components of food.	K1
	Explain the procedures adopted for analysis	K2
	Choose a particular method from available methods	K3
	Activities. Assignment and seminar (PO1, PO2, PO7) on the analysis of	
	components of food	
CO-5	List the methods to illustrate the presence of adulterants in food	K1
	Relate the presence of adulterants to health hazard	K2
	Make use of laboratory tests to identify adulterants	К3
	Correlate the extent of damage to the amount of adulterants present	K4
	Plan methods estimate and eliminate to the adulterants	К5
	Activities. (i) Class tests and (ii) assignment followed by presentation (PO1,	
	PO2, PO7) on the adulterants and their effect on food. (iii). E-quiz on	
	adulterants and their effects on food. (PO3) (iv). Group discussion on	
	adulterants. (PO5)	

		РО												
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners				
CO1	3	2	1	1	1	1	2	1	1	1				
CO2	3	2	2	2	3	1	2	2	2	1				
CO3	3	2	1	1	3	1	2	2	2	1				
CO4	3	2	1	1	1	1	2	1	1	1				
CO5	3	2	2	2	3	1	2	1	1	1				
PD5306- AVG	3	2	1	1	2	1	2	1	1	1				
PD5306- TOTAL	15	10	7	7	11	5	10	7	7	5				

Course outline

UNIT-I

CONCEPTS IN FOOD CHEMISTRY

Introduction to food chemistry, water structure, interactions of water with food materials and food components, water binding, moisture contents in foods, role of water in food preparation, food guide- basic five groups, and usage of food guide.

UNIT-II

FOOD ADDITIVES

Food additives: Need for food additives, Antioxidants, chelating agents, colouring agents, curing agents, emulsions, Flavours and flavour enhancers, Texuring agents, Humecants, sweeteners-Nonnutritive sweeteners, Preservatives, stabilizers and thickeners, other additives.

UNIT-III

FOOD PRESERVATION AND PROCESSING

Food Deterioration- Microbial spoilage, food enzyme, insects, parasites and rodents, temperature, moisture, oxygen, light and time, food safety in the home.

(12 hrs)

(12 hrs)

(12 hrs)

Methods of Preservation and Processing- Preservation and processing by- heat, cold. Chill storage, Deep freezing, Drying, Concentration, Fermentation, Radiation.

UNIT- IV

FOOD ANALYSIS

Food sampling- sample and sample preparation of foods.

Analysis of protein- determination of moisture content, ash content, nitrogen content- Kjeldahl method.

Analysis of oils and fats- analysis of crude fats, determination of iodine number, acid number, saponification value.

Analysis of carbohydrates- analysis of glucose and starch- Benedict's method, Anthrone method, Nelson- Somoyogi- analysis of crude fibers. Estimation of vitamins- Thiamine and Riboflavin.

Enzyme Activity- Measurement of enzyme activity-principle, estimation of catalase in chowchow and radish.

UNIT- V

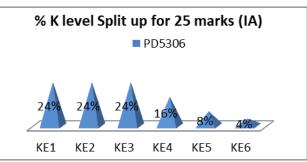
FOOD ADULTERATION

Detection of adulteration in coffee, tea, oil, fooddhal, sugar, milk, ghee, supari, turmeric powder, kesari powder, chilli powder, spices, jaggery, sweets, jam, jelly, honey- laboratory tests, chemistry behind each test and health hazards of the adulterants.

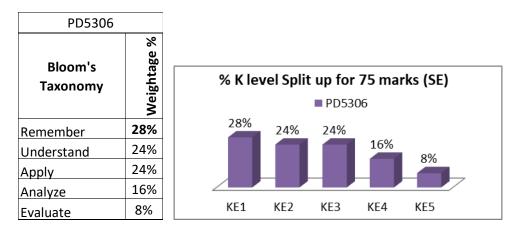
Estimation of benzoic acid, saccharin powder and B.O.A. A test.

REFERENCES

- 1. Beritz. H.D., Grosch. M.W, "Food Chemistry", 2nd edition, Springer, Verlag, Germany.
- Geetha Swaminathan, Mary George, "Laboratory Chemical Methods in Food Analysis", 1999, Margham publication, Chennai.
- Sharma. B. K, "Instrumental Methods of Chemical Analysis", Goel Publishing house, Meerut.
- 4. Swaminathan. M., "Text Book on Food Chemistry", Printing and Publishing Co ltd., Bangalore.
- Coultate. T. P., "Food Chemistry of is Components"3rd Edition, 1999, Royal Society of Chemistry, Cambridge.
- 6. Lehninger. A.L., 'Principles of Biochemistry", Worth Publishers.


(12 hrs)

(12 hrs)


- 7. Voet and Voet, "Biochemistry", John Wiley.
- 8. Norman N. Potter, Food science, CBS publishers and distributors, New Delhi. 1994.
- Lillian Hoagoland Meyer, Food Chemistry, CBS publishers and distributors, New Delhi. 1994.
- 10. Owen R Fennema, Food Chemistry, Marcel Decker Inc., New York. 1996.
- 11. Srilakshmi B., Food Science, New age International Pvt. Ltd. Publishers, III ed. 2003.
- 12. Siva Sankar B., Food Processing and Preservation. Prentice Hall of India Pvt. Ltd., New Delhi. 2002.
- Shakuntala Manay. N, Shadaksharaswamy.M., Foods Facts and Principles., New age International Pvt. Ltd. Publishers.
- 14. Chopra.H.K, Panesar.P.S., Food Chemistry., Narosa Publishing House.

CIE-Continuous	Internal	Evaluation	(25)	Marks)
----------------	----------	------------	------	--------

Р	PD5306									
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam						
Total (25)	5	5	5	10	9					
Remember (6)	1	1	2	2						
Understand (6)	1	0	1	4						
Apply (6)	2	2	0	2						
Analyse (4)	0	1	1	2	2					
Evaluate (2)	1	0	1	0						
Create (1)	0	1	0	0	K					

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI - 4

M.Sc. CHEMISTRY

ORGANIC CHEMISTRY – III Semester- III

Paper No. : XII Code: PC5329 Learning Objectives : The target of the course is to impart

 understanding about the basic principles of photochemical reactions and concepts behind pericyclic reactions.

- 2. thorough knowledge about the stability and reactivity of aromatic compounds.
- 3. idea regarding the modern reagents in organic synthesis.
- 4. expertise in retro synthetic analysis.

Course Outcomes

K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO No.	Course outcomes Upon completion of the course, students will be able to	POs addre ssed
CO-1	define the characteristics of organic photochemical reactions and describe underlying principles.	K1 K2
CO-2	identify different types of pericyclic reactions and explain them with suitable examples. predict the regiochemical and stereochemical outcomes of pericyclic reactions. Activities Seminar on pericyclic reactions (PO2, PO7) eQuiz on pericyclic reactions (PO3, PO4) Webresources (PO9) http://ursula.chem.yale.edu/~chem220/chem220js/STUDYAIDS/pericyclic/Peri cyclicRxn.pdf http://www.iiserpune.ac.in/~harinath/images/CHM-311-Oct-24-2013.pdf https://nptel.ac.in/courses/104/106/104106077/	K1 K2 K3
CO-3	 Recognize characteristics of aromatic compounds and describe their stability. Differentiate between aromatic, non aromatic and antiaromatic organic compounds. Characterize aromatic and antiaromatic compounds using NMR spectrum. Activity Debate on the correlation between aromaticity and stability (PO2) 	K1 K2 K3 K4
CO-4	Name modern reagents in organic synthesis and illustrate their applications. Predict and propose suitable reagents for functional group transformations. Activity Seminar on functional group transformation by modern reagents using PPT	K1 K2 K3 K5

Max Marks: 75 Credits: 4

	(PO2, PO7)	
	eResource (PO9): https://hwpi.harvard.edu/files/myers/files/12-	
	the_suzuki_reaction.pdf	
	https://nptel.ac.in/content/storage2/courses/104103023/download/module3.pdf	
CO-5	Recall guidelines for retrosynthetic analysis.	K1
	Convert target organic molecules into simpler and commercially available	K2
	starting materials.	K3
	Discover methodologies for the synthesis of target molecules.	K4
	Analyse different disconnection strategies for the target molecule.	K5
	Assess various synthetic methodologies for target molecules and design the synthesis of organic compounds by best synthetic sequence which is economically viable and environment friendly	K6
	Activity	
	Assignment on synthesis of drug molecules through retrosynthetic analysis followed by group discussion to assess the effectiveness of the methodology (PO1, PO3, PO4, PO7)	
	eResources (PO9, PO10)	
	http://chemlabs.princeton.edu/macmillan/wp-	
	content/uploads/sites/6/JLA_Synthetic_Planning.pdf	
	https://www.asu.edu/courses/chm233/notes/retrosynthesis/retrosynthesisS2020.	
	pdf	
	https://nptel.ac.in/courses/104/105/104105087/	

		РО								
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	1	1	1	1	1	2	1	1	1
CO2	3	2	2	2	2	1	2	2	3	1
CO3	3	2	1	1	1	1	2	1	1	1
CO4	3	3	2	2	2	1	3	1	2	1
CO5	3	2	3	3	2	1	2	2	2	1
PC5329-AVG	3	2	2	2	2	1	2	1	2	1
PC5329-TOTAL	15	10	9	9	8	5	11	7	9	5

Course outline

UNIT - I

PHOTOCHEMISTRY

Photochemical excitation: Experimental techniques, electronic transitions, Jablonskii diagrams, intersystem crossing (ISC), energy transfer.

Reactions of electronically excited ketones, π - π^* and n- π^* triplets, α – cleavage: Norrish type I and Norrish type II reactions; β - cleavage; photo reductions, phot oxidation and dimerisation, Paterno – Buchi reactions, photochemistry of an α , β -unsaturated ketones, cis-trans isomerisation. Photochemical rearrangement : di-pi methane rearrangement, 1,3,5-trimethylbenzene to 1,2,4-trimethylbenzene, Barton reactions.

UNIT –II

PERICYCLIC REACTIONS

Classification, Woodward – Hoffmann rules – Frontier Molecular Orbital (FMO), Orbital symmetry correlation approaches. Huckel Molecular orbital method or perturbation molecular orbital method.

Electrocyclic reactions: Conrotatory and disrotatory motions of 4n, 4n+2, allyl systems, selection rules. Cycloaddition reactions: antarafacial and suprafacial additions, notation of cycloadditions in 4n and 4n+2 systems, [2+2] and [4+2], ene reactions and 1, 3-dipolar cycloaddition reactions, stereochemical effects and effect of substituents on the rate of cycloaddition.

Sigmatropic rearrangements: selection rules with simple examples, 1, 3- and 1, 5- hydrogen shift – Cope, hetero cope and Claisen and thio-Claisen rearrangements.

UNIT III

AROMATICITY

NMR concept of aromaticity and antiaromaticity – compounds with aromatic sextets: Five, six, seven, and eight membered ring and other systems – Huckel's theory of aromaticity – electron occupancy in MOs – Systems with (4n+2) π electrons and 4n π electrons – Alternant and Non-alternant hydrocarbons – aromatic systems with 2, 4, 8, and 10 electrons – Systems of more than 10 electrons (Annulenes) – Aromaticity in Sydnones and fullerenes – Concept of homoaromaticity – Heteroaromatic molecules.

(18 hrs)

(18 hrs)

UNIT IV

REACTIONS INVOLVING MODERN REAGENTS IN ORGANIC SYNTHESIS

Stork-Enamine reaction, Japp-Klingemann reaction, Ziegler alkylation, Hoffmann-Loffler reaction, Simmon-Smith reaction, Mannich reaction, Baylis-Hillman reaction. Biginelli reacation, Mitsunobu reaction, Fukuyama coupling, Heck reaction, Dieckmann reaction, Hiyama coupling, Stille coupling, Suzuki coupling, Sonogashira coupling.

UNIT V

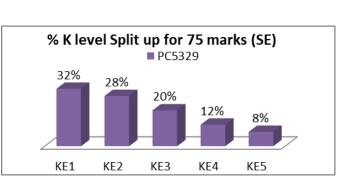
(18 hrs)

RETROSYNTHESIS

An introduction to synthons and synthetic equivalent groups, electron donors (nucleophiles), electron acceptors (electrophiles). Guidelines for retrosynthesis. One group C-X disconnections – carbonyl derivatives, alcohols and ethers. Two group C-X disconnections - 1,1-, 1,2-, and 1,3-, difunctionalised compounds. One group C-C disconnections – ketones, acids; Alkene synthesis. chemoselectivity and regioselectivity. Umpolung reactions, Diels Alder reactions

Reference Books

- 1. J. March, Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 6th Ed., Wiley interscience, 2007.
- J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, 1st Ed., 2000.
- 3. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B. 5th Ed., Springer, 2007.
- 4. H. O. House, Modern Synthetic Reactions, 2nd Ed. W. A. Benjamin, New York, 1972.
- 5. K. Mackie, M. Smith, P. Aitken, Guide Book to Organic Synthesis, 3rd Ed., ELBS, England, 2000.
- 6. S. Warren, P. Wyatt, Organic Synthesis, The Disconnection Approach, Wiley, 2009.
- 7. R. K. Kar, Fundamentals of Organic Synthesis-The retrosynthetic analysis, New Central Book Agency, 2007.
- 8. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Ed., Cambridge University Press, Cambridge, 2004.
- 9. J. D. Morrison, Asymmetric Synthesis, Vols 1-5, Academic Press, 1983.
- 10. R. Noyori, Asymmetry Catalysis in Organic Synthesis, Wiley, New York, 1994.
- 11. I. Ojima, Catalytic Asymmetric Synthesis, VCH- New York, Pergamon, 1998.
- 12. H. B. Kagan, Asymmetric Synthesis, Thieme Medical Publishers, 1st Ed., 2003.
- 13. J. D. Coyle, Organic Photochemistry, Wiley, 1985.


- 14. J. M. Coxon, B. Halton, Organic Photochem., Cambridge University Press, 2nd Ed., 1987.
- 15. S. Sankararaman, Pericyclic Reactions A Textbook, Wiley-VCH, 2005.
- 16. J. Singh, J. Singh, Photochemistry and Pericyclic Reactions, New Age International, 2003.

F	PC532	Э			
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam	
Total (25)	5	5	5	10	% K level Split up for 25 marks (IA) PC5329
Remember (7)	1	1	2	3	PC3329
Understand (7)	1	0	1	5	
Apply (5)	2	2	0	1	
Analyse (3)	0	1	1	1	28% 28% 20% 12% 8% 4%
Evaluate (2)	1	0	1	0	4%
Create (1)	0	1	0	0	KE1 KE2 KE3 KE4 KE5 KE6

CIE-Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5329	
Bloom's Taxonomy	Weightage %
Remember	32%
Understand	28%
Apply	20%
Analyze	12%
Evaluate	8%

QUEEN MARYS COLLEGE (AUTONOMOUS), CHENNAI – 4 M.Sc. CHEMISTRY GROUP THEORY, SURFACE PHENOMENA AND THERMODYNAMICS –(CORE)

Semester - III

Paper No. : XIII Code: PC5330 Max Marks: 75 Credits: 4

LEARNING OBJECTIVES

- 1. To understand the concept of group theory and its applications and significance.
- 2. To apply the concepts of statistical thermodynamics.
- 3. To give an insight into the area of surface chemistry.

Course Outcomes

K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO No.	Course outcomes	POs
	Upon completion of the course, students will be able to	addressed
CO-1	Attain indepth knowledge on the symmetry elements and symmetry operations.	K1
	Classify molecules into point groups.	K2
	Describe matrix representation of symmetry operation, reducible and irreducible	K4
	representation.	K6
	Construct character table for point groups.	
	E- quiz is conducted in identification of point group. (PO3 and PO4)	
	E resources	
	https://youtu.be/e473_8NMp0s?list=PLj_Alq7xw30knZPTpa9whzqiSn_RZHG	
	<u>WP</u> (nptel)	
	https://youtu.be/Had8fQfSL2U?list=PLj_Alq7xw30knZPTpa9whzqiSn_RZHG	
	<u>WP(nptel)</u>	
	https://youtu.be/TGS5QidgGPo?list=PLj_Alq7xw30knZPTpa9whzqiSn_RZHG	
	<u>WP</u> (nptel)	
CO-2	Define symmetry selection rule for IR and Raman spectra.	K1
	Apply selection rule to determine the symmetries of vibrational modes in	K2
	various molecules.	K3
	Assignment given in identification of symmetries of vibrational modes in	
	various molecules.	
	E resources(PO9,PO10)	
	https://youtu.be/gM-	
	CMcBYp18?list=PLj_Alq7xw30knZPTpa9whzqiSn_RZHGWP(nptel)	
CO-3	Define basic concepts in surface phenomena.	K1
	Explain electrical phenomena at interfaces including electro kinetic phenomena,	K2
	micelles, solubilisation, micro emulsion etc.	
	Analyse the surfaces using SEM.	K4
	Seminar on surface phenomena followed by group discussion to assess their	

	importance in the environment (PO1, PO3, PO4, PO5, PO7) E resources <u>https://youtu.be/FVMdog5zzE4</u>	
CO-4	Know about the thermodynamic probability and distribution law.	K1
	Describe Fermi – Dirac and Bose-Einstein statistics.	K2
	Summarise the relation between molecular and molar partition function.	K3
	Apply the molar and molecular partition function to linear and non-linear molecules. E resources <u>https://youtu.be/KBe1d8BdjqQ</u> (nptel) <u>https://youtu.be/1aHFG7VLr-g</u> (nptel)	К5
CO-5	Introduce the concepts of thermodynamics.	K1
	Explain Onsager's theory	K2
	Illustrate irreversible thermodynamics to biological and non linear systems. E resources (PO9,PO10) <u>https://youtu.be/S0I37M2sx_0</u>	К3

	РО									
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and 2international Persnective	10 Lifelong learners
CO1	3	1	1	2	1	1	2	1	2	1
CO2	3	2	2	2	2	1	2	1	2	1
CO3	3	2	2	2	2	1	2	1	2	1
CO4	3	1	1	1	1	1	2	1	1	1
CO5	3	1	1	1	1	1	2	1	1	1
PC5330 -AVG	3	1	1	1	1	1	2	1	2	1
PC5330 TOTAL	15	7	7	8	7	5	10	5	8	5

Course outline

UNIT - I

GROUP THEORY – I

Symmetry elements and symmetry operations. Groups, subgroups and classes of symmetry operations. Systematic classification of molecules into point groups.

Matrix representation of symmetry operation, Reducible and irreducible representations. Direct product representation. Orthogonality theorem – construction of character table for point groups- C_{2v} , C_{2h} , C_{3v} .

UNIT – II

GROUP THEORY – II

Symmetry selection rules for IR and Raman spectra. Systematic procedure for determining the symmetries of vibrational modes in molecules such as H₂O, NH₃, trans N₂F₂. Rule of mutual exclusion. Hybrid orbitals for sigma bonding in BF₃, CH₄, SF₆ and PCl₅.

UNIT - III (18 hrs) SURFACE PHENOMENA

Surface tension, adsorption on solids, surface excess and its importance. Gibbs adsorption isotherm, electrical phenomena at interfaces, including electro kinetic phenomena, micelles and reverse micelles, solubilisation, micro emulsion.. SEM to the study of surfaces.

UNIT - IV

THERMODYNAMICS - I

Statistical Thermodynamics - Different types of ensembles, thermodynamic probability and distribution law (Boltzmann statistics). Partition function and thermodynamics parameters: Relation between partition function and E, H, S, C_v, P, A and G.

Relation between molecular and molar partition function, translational partition function, rotational partition function for linear and nonlinear molecules, vibrational partition function, electronic partition function, equilibrium constant in terms of partition function.

Introduction to quantum statistics: Distribution law for fermions (Fermi-Dirac Statistics) and for bosons (Bose-Einstein statistics)

(18 hrs)

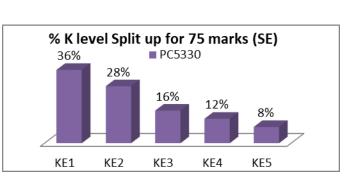
(18 hrs)

(18 hrs)

UNIT - V

THERMODYNAMICS - II

Irreversible Thermodynamics - Near equilibrium process: Conservation of mass and energy- Entropy production in chemical reactions – entropy production and entropy flow in open systems. - Onsager theory – Onsager's reciprocal relations – validity and verification. Thermoelectricity-Electro kinetic and thermo mechanical effects. Application of irreversible thermodynamics to biological and non- linear systems.


REFERENCE BOOKS:

- Alan.Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications. John and Wiley & Sons Ltd., 1977
- D. A. McQuarrie, J. D. Simon, Physical chemistry A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1998.
- 3. Donald A. McQuarrie, Quantum Chemistry. Viva Books PW. Ltd.. New Delhi. 2003.
- 4. R.L. Flurry Jr., Sym.Groups. Theory and Chem. Applications, Prentice Hall Inc., 1980.
- 5. F. A. Cotton, Chem. Appl.s of Group Theory, 2nd Ed., John Wiley & Sons, 1971.
- 6. P.W. Atkins and J. P. Atkins, Physical Chem., 7th Ed, Oxford University Press, 2002.
- 7. K. Rajaram and J.C. Kuriacose, Thermodynamics for students of chemistry, 2nd Ed., S. Chand and Sons., Jalandhar, 1986.
- 8. K. K.Rohatgi, Mukherjee, Fundamentals of Photochemistry, New Age International Publishers, New Delhi, 1978.
- D. A. McQuarrie and J. D. Simon, "Physical Chemistry-A Molecular Approach" 1st Ed., Viva Books Pvt. Ltd., New Delhi, 1998.
- 10. I. M. Klotz and R. M. Rosenberg, Chemical thermodynamics, 6th Ed., W.A.Benjamin Publishers, California, 1972.
- 11. M. C. Gupta, Statistical Thermodynamics, New Age International Pvt. Ltd., New Delhi, 1995.
- 12. R. P. Rastogi and R. R. Misra, Classical Thermodynamics, Vikas Publishing Pvt. Ltd., New Delhi, 1990
- S. H. Maron and J. B. Lando, Fundamentals of Physical chemistry, MacMillan Publishers, New York, 1974

PC	5330								
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam					
Total (25)	5	5	5	10	% K level Split up for 25 marks (IA)				
Remember (8)	2	2	2	2	PC5330				
Understand (7)	1	0	1	5					
Apply (4)	1	1	0	2					
Analyse (3)	0	1	1	1	32% 28% 16% 12%				
Evaluate (2)	1	0	1	0	10/0 12/0 8% 4%				
Create (1)	0	1	0	0	KE1 KE2 KE3 KE4 KE5 KE6				

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5330	
Bloom's Taxonomy	Weightage %
Remember	36%
Understand	28%
Apply	16%
Analyze	12%
Evaluate	8%

QUEEN MARYS COLLEGE (AUTONOMOUS), CHENNAI – 4 M.Sc. CHEMISTRY PHYSICAL CHEMISTRY PRACTICAL – III (core) Semester: III

Paper No. :XIV Code: PC5331 Learning Objectives

Max Marks: 75 Credits : 4

The aim of the course is to enable the students to understand the important concepts in Physical Chemistry by carrying out suitable related experiments.

Course Outcomes : K1 – Remember,K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluation, K6 - Create

CO	Course Outcomes	POs
No	Upon completion of the course, student will be able to	addressed
CO-1	Identify the nature of the experiment.	K1
	Understand the principle behind conductometric titrations.	K2
	Apply the experimental skill to obtain and tabulate the data.	K3
	Correlate the experimental observation with graphical plot.	K4
	Construct the experimental setup for various titrations.	K5
	Viva (PO3, PO4)	
	Web Resources (PO9)	
	https://youtu.be/aWwEGCNtKwk(courtesy-youTube)	
CO2	Recognize the need for the determination of equivalent conductance of Strong	K1
	electrolytes.	K2
	Relate Kohlrausch law for the determination of Dissociation constant of weak	
	electrolyte.	
	Viva (PO3, PO4)	
	Web resources (PO9)	
	https://youtu.be/pBLRhxsXC4k(courtesy-youTube)	
CO-3	Identify the principle and type of potentiometric titration.	K1
	Interpret the experimental data for quantitative estimation of the given substance.	K2
	Operate the appropriate instruments for accurate analysis.	
	Analyze the solution of unknown concentration by performing potentiometric	K3
	titration.	K4
	Estimate the amount of FAS and KI present in the given solution.	
	Viva (PO3, PO4)	K5
	Web Resources (PO9)	
	https://youtu.be/gd1YQr-74sw (courtesy-youTube)	
CO-4	Recall the procedure for the kinetic study of the reaction between Potassium	K1
	persulphate and Potassium iodide.	
	Correlate the ionic strength and rate constant of the reaction by applying kinetics.	K2
	Summarize the experimental data and	
	Construct the graphical plot to obtain expected outcome.	K3
	Viva (PO3, PO4)	K4
	Web Resources (PO9)	
	https://youtu.be/9stfMz0R0(courtesy-youTube)	

CO-5	Describe and express the concentration of various solutions used in Conductometric	K1
	and Potentiometric titrations using standard terms.	K2
	Work as an individual and as team member	K6

	РО										
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners	
CO1	3	2	2	3	1	2	2	1	1	1	
CO2	3	2	1	1	1	1	1	1	1	1	
CO3	3	2	3	1	2	3	2	2	1	1	
CO4	3	1	2	2	2	1	2	2	1	1	
CO5	3	1	1	2	1	1	2	1	2	1	
PC5331-AVG	3	2	2	2	1	1	2	1	1	1	
PC5331TOTAL	15	8	9	9	7	8	9	7	6	5	

Course outline

I. CONDUCTOMETRIC TITRATIONS:

- a. Strong acid vs. Strong base
- b. Weak acid vs strong base
- c. Mixture of acids vs. Strong base
- d. Determination of the equivalent conductance at infinite dilution of the given electrolyte
- e. Determination of the equivalent conductance, degree of dissociation and dissociation constant of the weak acid.
- II. POTENTIOMETRIC TITRATIONS:

- a. Acid Base titrations
- b. Redox titrations
- c. Determination of dissociation constant of weak acid.
- d. pH of buffer.

III. KINETICS:

Persulphate - Iodide reaction - Determination of order, Effect of ionic strength on rate constant.

REFERENCES :

- 1. Experimental Physical Chemistry, G. Peter Mathews, Oxford Science Publications, 1985.
- 2. Experimental Physical Chemistry, Ed. By G. Daniet, International Students Ed., McGraw

Hill Hogakusha Ltd., 1970.

3. Senior Practical Chemistry, D.D. Khosla, V.C. Carg, R. Chand & Co. New Delhi, 1975

CIE-Continuous Internal Evaluation (25 Marks)

PC5331						
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam		
Total (25)	5	5	5	10		
Remember (7)	2	2	2	1		
Understand (7)	1	0	1	5		
Apply (4)	1	1	0	2		
Analyse (4)	0	1	1	2		
Evaluate (2)	1	0	1	0		
Create (1)	0	1	0	0		

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5331	
Bloom's Taxonomy	Weightage %
emember nderstand	 32% 28% 16%
pply nalyze	16% 16%
Evaluate	8%

QUEENMARY'S COLLEGE (A), CHENNAI - 4 M.Sc CHEMISTRY PROBLEM SOLVING IN CHEMISTRY- (Elective) Semester -III

Paper No: XV Code: PE5313

Max Marks: 75 Credits: 3

LEARNING OBJECTIVES

The target of the course is to apply theoretical concepts to solve numericals and develop critical thinking and reasoning ability

- 1 To learn the strategy of problem solving in coordination chemistry, quantum chemistry and chemical kinetics.
- 2 .Can bring about the functional group transformations choosing proper reagents and analyse the correct products based on stereo chemical aspects.
- 3 Can solve the problems from electro chemistry and solid state chemistry

Course Outcomes

CO	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addressed
CO-1	Name the different type of coordination complexes	K1
	Compare the different magnetic properties of complexes	K2
	Solve problems based on CFT (PO2) Web resource (PO9) https://unacademy.com/lesson/questions-part-1/8SZA3VLA	K3
CO-2	Identify name reactions and the reagents involved	K1
	Explain the selectivity in some reaction mechanisms seminar (PO2)	K2
	Predict the correct reagents for a particular synthesis	K3
	Prioritise and select the correct reagent for a particular synthesis (PO3)	K4
CO-3	Recognize enantiomers	K1
	Differentiate Norrish typeI and II reactions.	K2
	Apply stereochemical concepts to pericyclic reactions	K3

	To explain effect of substituents on cycloaddition reactions	K4
	Predict the products in a reaction and substantiate the same (PO2)	К5
	Develop eco friendly novel pathways in reaction mechanism to arrive at stereochemically preferred product	K6
	Group activity (PO5) Quiz (PO4) web resources (PO9) (PO10)	
	http://ursula.chem.yale.edu/~chem220/chem220js/STUDYAIDS/pericyclic/Pericyclic Rxn.pdf	
	http://www.iiserpune.ac.in/~harinath/images/CHM-311-Oct-24-2013.pdf https://nptel.ac.in/courses/104/106/104106077/	
CO-4	Describe Huckel M.O. theory	K1
	explain the need for normalization of a wave function	K2
	apply the Schrodinger equation to various dimensions.	K3
	infer the degree of degeneration	K4
	Solve numerical based on above concepts(PO3) Web resource (PO9)	K5
	https://unacademy.com/lesson/introduction/W134859Y https://www.youtube.com/watch?v=Uf57yY7_U	
CO-5	Identify different types of crystal systems and order of reactions. Interpret miller indices for planes and direction.	K1
	Group activity (PO5) Apply Nernst equation and Kohlrausch's law to solve numerical and interpret spontaineity of a chemical reaction	K2
	Derive the Arrhenius equation and apply the same to solve numerical (PO2) Evaluate the kinetics of equilibrium reactions Web resources (PO9)	К3
	https://www.ugcpoint.in/net-gate-sample-study- material/Sample_paper_stady_materials/Chemical%20Kinetics.pdf	K4
	manufaction and a paper start internal and internation and internation and internation and internation and international	

Strongly correlated -3 Moderately correlated -2

PE5313- AVG	3	2
PE5313-	15	9
TOTAL	15	9

Course outline

UNIT – I

INORGANIC CHEMISTRY

1.1 Coordination chemistry

Nomenclature, isomerism, hybridization, CFT, CFSE, paramagnetic and diamagnetic properties, strong and weak ligands, nephelauxetic series, stability, colour, concepts of acids and bases: Hard-Soft acids and base concept – Non aqueous solvents.

UNIT – II

ORGANIC CHEMISTRY -I

2.1 Reaction Mechanism - selectivity of alkylation of enolates, Micheal addition reactions, Lithium directed aromatic electrophilic substitutions.

2.2 Reagents in Organic synthesis

		РО									
CO/PO/PSO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners	
CO1	3	3	3	2	2	1	2	1	1	1	
CO2	3	1	3	3	2	1	2	1	1	1	
CO3	3	2	3	3	3	1	2	2	2	1	
CO4	3	1	3	2	2	1	2	1	2	1	
CO5	3	2	3	2	3	1	2	1	2	1	
PE5313- AVG	3	2	3	2	2	1	2	1	2	1	
PE5313- TOTAL	15	9	15	12	12	5	10	6	8	5	

(12hrs)

(12hrs)

Weakly correlated -1

Grignard reagent – Diborane – mCPBA - Cu reagents: Simmon-Smith reaction, Gilman reagent -Titanium reagents: Sharpless asymmetric epoxidation. Palladium reagents: Fukuyama coupling, Heck reaction, Stille coupling, Suzuki coupling -

Palladium & Copper: Sonogashira coupling - Palladium & Silicon: Hiyama coupling.

UNIT – III

ORGANIC CHEMISTRY – II

3.1 Stereochemistry and Conformational Analysis

Enantiotopic and diastereotopic atoms, groups and faces – R, S notation.

3.2 Photochemistry & Pericyclic Reactions

Jablonskii diagrams - Norrish type I and Norrish type II reactions - Paterno - Buchi reactions.

HOMO LUMO in ethylene and 1, 3-butadiene

Electrocyclic reactions - Conrotatory and disrotatory motions.

Cycloaddition reactions – 1, 3 Dipolar additions - Diels Alder reaction: Nature of diene, Effect of substituents, Stereochemistry, Regioselectivity.

Sigmatropic rearrangements - Cope rearrangement, Claisen Rearrangment

UNIT -IV

Normalisation of wave functions – Eigen value and Eigen functions – particle in 1D, 2D, 3D boxes – degree of degeneration – Huckel Molecular Orbital Theory – first order perturbation – Variation method.

UNIT-V

(12 hrs)

(12 hrs)

5.1Chemical kinetics: Rate law - Order determination , theories , ARRT – photochemical reactions.

5.2 Electrochemistry:Nernst equation – Debye Huckel Theory – conductance – Kohlrausch's law and its application – ionic equilibria.

5.3 Solid state:Unit cells, miller indices, density and radius.

REFERENCE BOOKS

UNIT I

- Huheey, J. E.; Keiter, E. A. Keiter, R. L. Inorganic Chemistry; 4th Ed.; Harper and Row, NewYork, 1983.
- Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Ed., Wiley Interscience: New York, 1988.

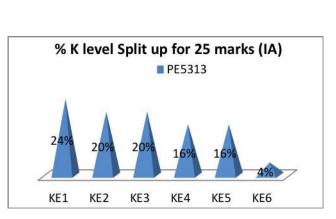
(12 hrs)

- 3. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.
- 4. SathyaPrakash, G.D.Tuli, S. K. Basu and R. D. Madan, Advanced Inorganic Chemistry, Volume I and Volume II, S.Chand, Reprint 2008

UNIT II & UNIT III

- 5. J. March, Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 6th Ed.,
- 6. Wiley interscience, 2007.
- D. Nasipuri, Stereochemistry of Organic Compounds-Principles and Applications, New Age International, 2nd Ed., 2002.
- E.L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, John Wiley & Sons, Inc., 2005.
- 9. P. S. Kalsi, Stereochem. Conformation and Mechanism, New Age International, 6th Ed., 2006.
- J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, 1st Ed., 2000.
- 11. F. A. Carey and R. J. Sundberg, Advanced Organic Chem., parts A and B. 5th Ed., Springer, 2007.
- 12. S. Sankararaman, Pericyclic Reactions A Textbook, Wiley-VCH, 2005.
- 13. J. Singh, J. Singh, Photochemistry and Pericyclic Reactions, New Age International, 2003.

UNIT IV


- 14. Atkins' Physical chemistry, 8thEd,Oxford university press 2006
- 15. Donald A McQuarrie, John D .Simon, Physical Chemistry a molecular approach, Viva Books Pvt.Ltd., 2010
- 16. Thomas Engel, PhilipReid, PhysicalChemistry, Pearson Education, 2006.
- 17. S.K.Dogra ,S.Dogra ,Physical chemistry through problems,New Age International Publishers,2004
- Clyde R Metz, Schaum's outline series theory and problems of Physical chemistry,McGraw-Hill book company

UNIT V

- 19. J N Gurtu ,R.Kapoor, A.Kapoor, Numerical Chemistry,S.Chand& Co. ,I Edn,1993.
- 20. ArunBahl,B.S.Bahl, Numerical problems in physical chemistry, S.Chand& Co., I Edn,2009.
- 21. K. D. Sharma, Anu Sharma, Numerical chemistry for competitions, S.Chand& Co., I Edn,2009.

CIE-Continuous Internal Evaluation (25 Marks)

PE5	313			
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam
Total (25)	5	5	5	10
Remember (6)	1	1	2	2
Understand (5)	1	0	1	3
Apply (5)	2	2	0	1
Analyse (4)	0	1	1	2
Evaluate (4)	1	0	1	2
Create (1)	0	1	0	0

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PE5313							
Bloom's Taxonomy	Weightage %		% K le 28%	evel Spl	it up fo ■ PE531 20%		rks (SE)
Remember	28%					16%	16%
Understand	20%						
Apply	20%						
Analyze	16%						
Evaluate	16%		KE1	KE2	KE3	KE4	KE5

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI-4 M. Sc. CHEMISTRY INORGANIC CHEMISTRY – III (Elective) SEMESTER III

Paper No. : XVI Code: PE5314 Max Marks: 75 Credits: 3

LEARNING OBJECTIVES

- 1 To gain knowledge about the main group elements.
- 2 To gain knowledge about the mechanism of nuclear reactions, the instrumentation involved and applications of radio isotopes.
- 3 To provide indepth knowledge on the different inorganic reactions within the biological system and the enzymes involved.
- 4 To offer insight into the field of boranes, cage compounds and supramolecular chemistry.

Course Outcomes

CO	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addressed
CO-1	Attain (K1) indepth knowledge on the different inorganic reactions	K1
	within the biological system and the enzymes involved.	K2
	Classify (K4) copper containing proteins	K4
	Describe (K2) Bohr effect models for cooperative interaction in Hb	
	E resources	
	https://authors.library.caltech.edu/25052/1/BioinCh.pdf	
	https://aiimsrishikesh.edu.in/documents/195_hb_structure_and_function_	
	mbbs_2017_batch.pdf	
CO-2	Know (K1) about essential and trace elements in biological system.	K1
	Apply(K3) the Pt, Au and metallocenes in medical field.	K2
	Explain(K2) biological cycles	K3
	Seminar on biological cycle followed by group discussion to assess	
	their importance in the environment (PO1, PO3, PO4, PO5, PO7)	
	http://webdelprofesor.ula.ve/ciencias/isolda/libros/quimica_bioinorganica.	
	pdf	
CO-3	Define (K1) Bethe notation.	K1
	Explain (K2) principle of compound nucleus theory	K2
	Solve (K3) problems in nuclear chemistry.	K3
	Compare (K5) different types of nuclear reactions.	K4
	Analyse (K4) the radioactive sample using isotopic dilution analysis.	K5

	E resources	
	https://www.slideshare.net/translateds/thermonuclear-bomb-hydrogen-	
	bomb	
	e quiz conducted in nuclear chemistry (PO3 and PO4)	
CO-4	Classify (K4) the boranes, naming of boranes	K1
	Explain (K2) the classification of carboranes.	K2
	Calculate(K3) the number of of electron deficient bonds	K3
	Know (K1) about the polyacids	K4
	https://www.dalalinstitute.com/books/a-textbook-of-inorganic-chemistry-	
	volume-1/problems-stereochemistry-and-bonding-in-main-group-	
	<u>compounds/</u>	
CO-5	Introduce (K1) the concepts of supramolecular chemistry.	K1
	Explain (K2)about various types of supramolecules.	K2
	Recognise(K1) various supramolecules	K6
	Hypothesise(K6) various supramolecules using macro cyclic ligands	
	E journal International Journal of Science and Research (IJSR) ISSN (Online):	
	2319-7064 Index Copernicus Value (2013): 6.14 Impact Factor (2013):	
	4.438 Volume 4 Issue 4, April 2015 www.ijsr.net	
	Supramolecular Chemistry-Concepts and Applications, Ajay Kumar Manna	
	https://www.nobelprize.org/prizes/chemistry/1987/lehn/lecture	
	https://youtu.be/08RBLIQ8VPE courtesy	

						PO				
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	1	1	1	1	1	2	1	2	1
CO2	3	2	2	2	2	1	2	1	1	1
CO3	3	2	2	2	2	1	2	1	1	1
CO4	3	1	1	1	1	1	2	1	2	1
CO5	3	1	1	1	1	1	2	1	2	1
PE5314-AVG	3	1	1	1	1	1	2	1	1	1
PE5314- TOTAL	15	7	7	7	7	5	10	5	8	5

87

Course Outline

UNIT-I

BIOINORGANIC CHEMISTRY-I (REF BOOK- 13, 15 & 16)

Porphyrin ring system – metalloporphyrins – hemoglobin and myoglobin – structures and work functions, Bohr effect models for cooperative interaction in Hb, oxygen transport in human body, cyanide poisoning and its remedy. Non- heme proteins

Synthetic oxygen carriers – cytochromes – structure and work functions – in respiration.Chlorophyll – structure – photosynthetic sequence – iron-sulphur proteins (non-heme iron protein). Copper containing proteins: Classification – blue copper proteins – structure of blue copper electron transferases – copper proteins as oxidases – cytochrome c oxidase – mechanistic studies of cytochrome c oxidase – Hemocyanin.

UNIT – II BIOINORGANIC CHEMISTRY-II (REF BOOK- 1 &13)

Carboxypeptidase A: Structure, function – carbonic anhydrase – inhibition and poisoning – corin ring system – vitamin B12 and B12 coenzymes – in-vivo and in-vitro nitro nitrogen fixation. Essential and trace elements in biological systems. Metal ion deficiency and disease: Fe, Cu and Zn. Metal ion toxicity: Classes of toxic metal compounds – Cu, Cd, Fe, Pb, Ca and Hg toxicity – detoxification. Molecular mechanism of ion transport across the membrane – sodium and potassium ions pumps. Metals in medicine: Au in rheumatic arthritis – Pt, Au and metallocenes in anticancer drugs – metals in radio diagnosis and magnetic resonance imaging. Biological cycles: Nitrogen cycle – hydrogen cycle.

Metal storage and transport: Fe,Cu,Zn and V storage and transport – metallothioneins: transporting some toxic metals – Zn^{2+} ion complexes: carbonic anhydrase II – carboxypeptidase A, Carboxypeptidase G2, Cobalt for Zn ion substitution.

UNIT-III

NUCLEAR CHEMISTRY-I

Bethe's notation – comparison between nuclear and chemical reaction – general mechanism of nuclear reactions – compound nuclear theory – direct nuclear reaction mechanism – scattering reactions, photonuclear reaction, trans mutation – stripping & pick–up reaction, nuclear fission, spallation, fragmentation and fusion. Comparison between fission, spallation and fragmentation.

(18 hrs)

(18hrs)

(18hrs)

Hydrogen and cobalt bomb – cosmic abundance of elements – charged particle accelerator, bondurator, linear accelerator, cyclotron – synchrotron – counters: Applications of radioactive isotopes : characteristics of tracer isotopes – principle, applications and limitation of isotope dilution analysis – neutron activation analysis – radiation dosimetry – radiometry – radiolysis of water

Numerical problem in Nuclear Chemistry.

UNIT-IV

BORON AND RING COMPOUNDS

Classification of boranes - nomenclature -structure and -molecular frame work of hydrides of boron skeletal electro pair counting and Wade's rule -polyhedral skeletal electron pair theory (PSEPT)- calculation of the number of election deficient bonds – equations of balance – Styx number and topology of boron hydrides – concept of multicentred bond as applied to electron deficient molecules –borazine,

Carboranes – types such as closo and nido – preparation, properties and structure. Metallocarboranes – a general study.

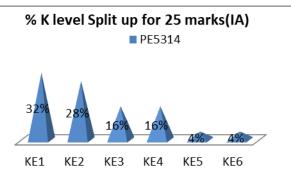
Chain: Catenation, heterocatenation, intercalation, Rings: phosphazenes, homocyclic inorganic systems Cages: Phosphorus cages. Polyacids- Isopolyacids of V, Cr, Mo and W; Heteropolyacids of Mo and W.

$\mathbf{UNIT} - \mathbf{V}$

(18hrs)

SUPRAMOLECULAR CHEMISTRY (REF. BOOK 11):

Introduction, Some important concepts - Introduction to Recognition, information and complementarity, Principles of molecular receptor designs, Spherical recognition (cryptates of metal cations) Tetrahedral recognition by macrotricycliccryptands, Recognition of ammonium ions, Recognition of neutral molecules and anionic substrates (anionic coordination)


REFERENCES

- 1. Huheey, J. E.; Keiter, E. A. Keiter, R. L. Inorganic Chemistry; 4th Ed.; Harper and Row, NewYork, 1983.
- 2. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Ed., Wiley Interscience: New York, 1988.
- 3. Purcell, K. F.; Kotz, J. C. Inorganic Chemistry; Saunders: Philadelphia, 1976.
- 4. Moeller, T. Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.

- 5. Shriver, D. F.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry; 3rd Ed.; Oxford University Press: London, 2001.
- 6. Rhodes, G. Crystallography Made crystal Clear; Academic Press Inc.: New York, 1993.
- 7. Hammond, C. The Basics of Crystallography and Diffraction; Oxford University Press; 1997.
- 8. Smart, L.; Moore, E. Solid State Chemistry An Introduction; 2nd Ed.; Nelson ThomesLtd.: Cheltenham, 1996.
- 9. H. J. Arnikar, "Essentials of Nuclear Chemistry", Wiley Eastern Ltd., New Delhi (1982)
- 10. A.K. Srivatsava and P. Jain, "Essential of nuclear Chemistry", S.Chand, N.Delhi, 1989
- 11. Supramolecular Chemistry (Concepts and Perspectives) Jean Marie Lehn(VCH-1995).
- 12. Bio Inorganic Chemistry Robert Wittay.
- 13. The Inorganic Chemistry of Biological processes M.N.Hughes.
- 14. Topics in current chemistry (Inorganic Biochemistry) vol. 64 (1976) Davison and Coworkers.
- 15. An Introduction to Biochemcial Reaction Mechanism James N.Lowe and Lloyalt Ingraham.
- 16. General Biochemistry Fruton J.S. and Simmonds S.
- 17. Plant Physiology RobeertN.Devtin.

CIE-Continuous Internal Evaluation (25 Marks)

PE5314								
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam				
Total (25)	5	5	5	10				
Remember (8)	3	2	3	0				
Understand (7)	1	0	1	5				
Apply (4)	1	1	0	2				
Analyse (4)	0	1	1	2				
Evaluate (1)	0	0	0	1				
Create (1)	0	1	0	0				

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PE5314						
Bloom's Taxonomy	Weightage %	% K lo 36%	evel Spli	t up foi PE53		arks(SE)
Remember	36%			16%	16%	
Understand	28%			10/0	10/0	
Apply	16%				_	4%
Analyze	16%					
Evaluate	4%	KE1	KE2	KE3	KE4	KE5

QUEEN MARY'S COLLEGE (AUTONOMOUS), CHENNAI – 4 M. Sc. CHEMISTRY

CHEMISTRY OF ENGINEERING MATERIALS- (Other Elective)

Semester -III

Paper No. : XVII Code: PD5307 Max Marks: 75 Credits: 3

LEARNING OBJECTIVES

1. To understnd the application of chemistry materials in various fields.

2. To gain knowledge and apply in the usage of fabricated chemistry materials such as lubricants, abrasives, plastics and polymers.

3. To Know the methodology of purifying water and the reverse osmosis system.

COURSE OUTCOMES:

CO. No	COURSE OUTCOME	POs Addressed
CO 1	Define and classify lubricants with suitable examples. Explain the characteristics of solid lubricants and illustrate their applications. <u>https://www.thelubricantstore.com/lubricant-properties</u>	K1,K4, K2,K3
CO 2	Define abrasives classify abrasives on the basis of hardness. Construct a chart based on hardness, properties and applications of abrasives. <u>https://link.springer.com/content/pdf/10.1007%2F978-1-4471-1572-</u> <u>4_2.pdf</u>	K1,K2,K3
CO 3	Recall the properties of plastics and Polymers Classify of thermoplastics and thermosetting plastics. Design various moulding methods Explain the characteristics of Engineering plastics. e quiz plastic types and its application in engineering <u>https://fibertechinc.net/custom-rotational-molding/a-simple-guide-to- plastic-molding/</u>	K1, K2, K4, K6,
CO 4	Define hardness of water. Illustrate requirements of potable water. Classify and explain various internal and external conditioning of water treatment. Evaluate the suitability of water in boilers Seminar Water purification techniques https://www.chemengonline.com/water-treatment-technologies/	K1,K2,K5,K4,K3

CO 5	Define fuels, combustion, octane and cetane number. Compare	K1,K2, K5,K3
	proximate and ultimate analysis of coal. Explain Otto hoffmann method	
	Calculate minimum volume and weight of air requirement of fuels.	
	https://www.sgsgroup.in/en-gb/mining/analytical-services/coal-and-	
	coke/proximate-and-ultimate-analysis	

Strong	y correlated	1-3	Moo	lerately c	orrelated PC			Weakly co	orrelated -1]
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	2	2	2	2	1	2	1	2	1
CO2	3	2	2	2	2	1	2	2	1	1
CO3	3	2	2	2	3	1	2	1	2	1
CO4	3	3	2	2	2	1	3	2	1	1
CO5	3	2	2	2	2	1	3	1	1	1
AVG PD5307	3	2	2	2	2	1	2	1	1	1
TOTAL PD5307	15	11	10	10	11	5	12	7	7	5

Course outline

UNIT-I

LUBRICANTS

Classification of lubricants with examples- properties (viscosity index, flash and fire pointscloud and pour point oiliness)- solid lubricants – graphite- molybdenum sulphide.

UNIT-II

ABRASIVES

Abrasive- types and classification- bonded, coated and others and their uses. Abrasive minerals, Choice of abrasives.

(12hrs)

(12 hrs)

91

UNIT-III

PLASTICS AND POLYMERS

Classification of plastics- Engineering plastics- PVC, Teflon, Polycarbonate, Polyurethane and Thermocole- properties-applications-compounding of plastics, moulding methods- injection moulding and compressionmoulding- polymer blends, alloys and some examples.

UNIT-IV

WATER TECHNOLOGY

Boiler feed water- requirements- disadvantages of using hard water in boilers- internal conditioning (phosphate, calgon and carbonate conditioning methods)- External conditioningdemineralization process- desalination- reverse osmosis- domestic water treatment.

UNIT-V

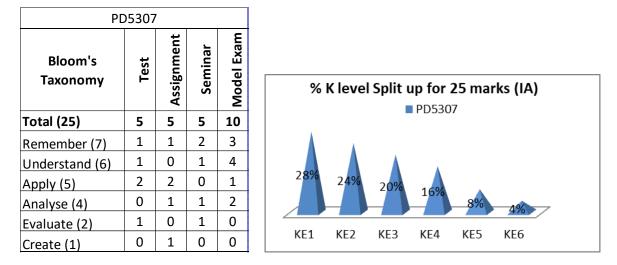
FUELS AND COMBUSTION

Proximate and ultimate analysis of coal- significance, characteristics of metallurgical cokemanufacture by Otto- Hoffman method- synthetic petrol- knocking- octane numberimprovement of knocking characteristics- cetane number, gaseous fuels- water gas, producer gas and CNG, gross and net calorific values-(definitions only)- theoretical calculation of calorific values(Dulong's formula)- simple problems- calculation of minimum air requirements- simple problems- flue gas, analysis- orsat's apparatus.

COURSE OUTCOME

The students

- 1. Gain knowledge and apply in the usage of fabricated chemistry materials such as lubricants, abrasives, plastics and polymers
- 2. Know the methodology of purifying water and the reverse osmosis system


REFERENCES

- 1. Engineering Chemistry by A. Ravikrishnan
- 2. Engineering Chemistry by Jain and Jain.
- 3. Industrial chemistry by B.K. Sharma

(12 hrs)

(12 hrs)

CIE-Continuous Internal Evaluation (25 Marks)
--------------------------------------	-----------

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PD5307						
Bloom's Taxonomy	Weightage %	% K 32%	level S	-	or 75 m 95307	arks (SE)
Remember	32%		24%	20%	16%	
Understand	24%					8%
Apply	20%		- 11		_	
Analyze	16%					
Evaluate	8%	KE1	KE2	KE3	KE4	KE5

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI - 4

M. Sc. CHEMISTRY

Organic Chemistry – IV Semester- IV

Paper No. : XVIII Code: PC5332 Max Marks: 75 Credits: 4

LEARNING OBJECTIVES

- 1 To understand the techniques involved in the extraction and methods of determination of structure of natural products.
- 2 To enable the student to understand and appreciate the importance of biomolecules.
- 3 To apply the knowledge of chemical reactions in solvent free organic synthesis
- 4 To comprehend the importance of heterocyclic compounds.

COURSE OUTCOMES:

Create		
CO-	Course outcomes Upon completion of the course, students will be able to	POs
No.		addressed
CO-1	List the natural products	K1
	Classify the terpenoids and alkaloids	
	Illustrate the methods of structural elucidation of terpenoids and alkaloids	K2
	Explain the synthesis and functions of alkaloids.	
		K4
	Activities	
	eQuiz on alkaloids and terpenoids (PO3,PO4)	K5
	eResource (PO9)	
	http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000016FS/P000696	
	/M011524/ET/1516251590FSC_P9_M33_e-text.pdf	
CO-2	Identify the chemistry of bio molecules.	K1
	Outline the basic aspects of structure and classifications of carbohydrates, lipids,	
	amino acids, proteins and nucleic acids.	K2
	Organize the flow of genetic information	
	Analyze the nature of genetic code, transcription and translation.	
		K3
	Activities	
	Seminar on the structure and basic aspects of bio molecules using PPT (PO2,	K4
	PO7) followed by group discussion (PO5)	

	eResource (PO9) https://ncert.nic.in/textbook/pdf/lech205.pdf	
	https://www.biologie.ens.fr/~mthomas/L3/intro_biologie/2-sucres-lipides- acides-nucleiques.pdf	
CO-3	Define Cram's rule , Prelog's rule for the asymmetric synthesis using chiral substrate Explain the Felkin –Ahn model.	K1
	Select suitable reagents for asymmetric reduction of prochiral ketones Activities	K2
	Assignment on asymmetric synthesis using chiral reagents and auxiliary and asymmetric alkylation and allylation of carbonyl compounds followed by Group discussion (PO1,PO3,PO4,PO5,PO7)	К3
	e Resource http://182.18.165.51/Fac_File/STUDY164@384635.pdf https://drive.google.com/file/d/1pUa9EiezQ_YHU2CcP8Gf18k7OTyU7IS5/view? usp=sharing http://web.uvic.ca/~fhof/classes/335/slides_ch45_asymmetricsynthesis.pdf	
CO-4	Describe the need for green chemistry and eco-efficiency Articulate the challenges in green chemistry.	K1
	Summarize the pollution control and pollution prevention methods. Develop experimental protocols incorporating the twelve principles of green	К3
	chemistry. Criticise the green methods, green products and recycling of waste.	K2
	eQuiz on green chemistry (PO3,PO4) Web resource (PO9)	K6
	http://sureshchem.weebly.com/uploads/1/4/2/7/14275226/green_chemistry_unit- viii.pdf https://www.intechopen.com/books/green-chemistry/the-role-of-green-solvents- and-catalysts-at-the-future-of-drug-design-and-of-synthesis	K5
CO-5	Identify the five, six, fused heterocyclic compounds Compare the properties of five membered ring compounds with 2 or more	K1
	heteroatoms Choose appropriate method for the preparation of six membered ring compounds	K4
	with 2 or more heteroatoms and fused heterocyclic containing one or more heteroatoms	K3
	Interpret the reactions of various heterocyclic compounds	К2
	Seminar on synthesis and reactions of various heterocyclic compounds like Quinoline, Indole, Pyrimidine, Purine , Imidazoles using PPT (PO2, PO7) followed by group discussion (PO5)	

Web Resource https://drive.google.com/file/d/0B2G5XQYeBUFNendhUm8zRXBZNEk/view? usp=sharing https://drive.google.com/file/d/1YMnYElzKRGhD7cyF0MybWbWr1usmhBU S/view?usp=sharing

Moderately correlated -

2

Strongly correlated -3

Weakly correlated -1

	РО									
CO/PO/PSO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	2	2	2	1	1	1	1	1	1
CO2	3	2	2	1	2	1	2	1	2	1
CO3	3	1	1	1	1	1	2	1	3	1
CO4	3	2	2	2	1	1	2	1	2	1
CO5	3	2	2	1	2	1	2	1	2	1
PC5332-AVG	3	2	2	1	1	1	2	1	2	1
PC5332-TOTAL	15	9	9	7	7	5	9	5	10	5

Course outline

UNIT I

NATURAL PRODUCTS

Terpenoids: Isolation and classification – methods of structural elucidation of zingeberine, squalene, caryophyllene, cadinene and abietic acid

Alkaloids: Structural elucidation of papaverine and cocaine. Synthesis and functions of atropine, heptaphyllene and morphine

(18 hrs)

UNIT II

BIOMOLECULES

Chemistry of Bio-molecules: Basic aspects of structure and classification of carbohydrates, lipids, amino acids, proteins and nucleic acids. Flow of genetic information, nature of genetic code, replication of DNA, transcription and translation, regulation of gene expression.

UNIT III

(18 hrs)

ASYMMETRIC SYNTHESIS

Asymmetric synthesis on chiral substrate: nucleophilic addition to alpha-chiral carbonyl compounds, prediction of stereochemistry-Cram's rule, Prelog's rule, Felkin-Ahn model. Asymmetric synthesis using chiral reagents: Chiral modification of lithium aluminium hydride – BINAL-H – Application in reduction of prochiral ketones; oxazaborolidines, T.S. Model, Asymmetric synthesis using chiral auxiliary: Chiral auxiliaries derived from proline, camphor, and menthol. Asymmetric synthesis using chiral suing chiral catalysts: Asymmetric alkylation and allylation of carbonyl compounds. Yeast as biocatalyst in asymmetric synthesis.

UNIT IV

GREEN CHEMISTRY

The need for green chemistry and eco-efficiency, challenges and green chemistry education, pollution control and pollution prevention – green methods, green products, recycling of waste. Twelve principles of green chemistry, inception of green chemistry, awards for green chemistry and international organizations promoting green chemistry.

Oxidation and reduction reactions, Alkylation reactions, Esterification and ether forming reactions, C-C and C-hetereoatom forming reactions, Dihydroxylation and Hydroxylamination,

UNIT V HETEROCYCLIC COMPOUNDS

Five-membered ring compounds with 2 or more heteroatoms: Imidazoles, Oxazoles, thiazoles, isooxazolone; Six-membered ring compounds with 2 or more heteroatoms: pyrimidines, purines, triazines. Fused heterocycles containing one or more heteroatoms: indoles, benzofurans, benzothiophene, quinolines, isoquinolines, benzopyrones.

(18 hrs)

(18 hrs)

Reference Books

- 1. J. March, Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 6th Ed., Wiley interscience, 2007.
- E.L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, John Wiley & Sons, Inc., 2005.
- 3. P. S. Kalsi, Stereochemistry, Conformation and Mechanism, New Age International, 6th Ed., 2006.
- J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, 1st Ed., 2000.
- 5. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B. 5th Ed., Springer, 2007.
- 6. H. O. House, Modern Synthetic Reactions, 2nd Ed. W. A. Benjamin, New York, 1972.
- 7. K. Mackie, M. Smith, P. Aitken, Guide Book to Organic Synthesis, 3rd Ed., ELBS, England, 2000.
- 8. S. Warren, P. Wyatt, Organic Synthesis, The Disconnection Approach, Wiley, 2009.
- 9. R. K. Kar, Fundamentals of Organic Synthesis-The retrosynthetic analysis, New Central Book Agency, 2007.
- W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Ed., Cambridge University Press, Cambridge, 2004.
- 11. I. L. Finar, Organic Chemistry, Vol.II, 5th Ed., Pearson, 2009.
- 12. RashmiSanghi, M. M. Srivastava, Green Chemistry, Environment Friendly Alternatives, Narosa Publishing House, 2007
- 13. V. Kumar, AnIntrod to Green Chem., Vishal Publishing CO. Jalandhar, 2007.

PC	25332	<u>)</u>			
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam	% K level Split up for 25 marks (IA)
Total (25)	5	5	5	10	PC5332
Remember (7)	1	1	2	3	
Understand (6)	1	0	1	4	28% 240
Apply (5)	2	2	0	1	20% 24% 20% 16%
Analyse (4)	0	1	1	2	8% 4%
Evaluate (2)	1	0	1	0	KE1 KE2 KE3 KE4 KE5 KE6
Create (1)	0	1	0	0	NEI NEZ NES NE4 NES NE0

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5332							
Bloom's Taxonomy	Weightage %		% K 32%	level Sp	olit up fo ■ PC5		rks (SE)
Remember	Š 32%			24%	20%	16%	
Understand	24%						8%
Apply	20%			_		_	
Analyze	16%						
Evaluate	8%		KE1	KE2	KE3	KE4	KE5

QUEEN MARY'S COLLEGE (A), CHENNAI - 4 M.Sc CHEMISTRY PHYSICAL CHEMISTRY AND ANALYTICAL TECHNIQUES (Core)

Semester -IV

Paper No: XIX Code: PC5333 Max Marks: 75 Credits: 4

LEARNING OBJECTIVES

- 1. To understand the chemistry of macromolecules and kinetics of polymerisation.
- 2. To understand the techniques involved in the instrumental analysis and electroanalytical methods.

Course Outcomes

CO	Course outcomes	POs addressed
No.	Upon completion of the course, students will be able to	
CO-1	Describe the types and Explain the mechanism of polymerization. Interpret the	K1
	stereochemistry of polymers	K2
	Seminar on characterization of polymers-measurement of mass and size. (PO2,PO7)	K3
	e-Resource: (PO9)	
	https://nptel.ac.in/courses/104/105/104105039/	
CO-2	Recognize gas phase reactions. Summarize the factors influencing reaction rate.	K1
	Evaluate the entropy of activation using ARRT.	K2
		K5
CO-3	Describe polarography and construct the polarogram	K1
	Compare voltammetry and amperometry	K2
	interpret various titration curves of amperometry.	K3
	E-Resource: (PO9)	K4
	Polarography:	
	http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000014ER/P00027	
	2/M027510/ET/1519203786paper2_Module27_etext.pdf	
	Cyclic volatametry:	
	http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000014ER/P00027	
	2/M028089/ET/1520333353Paper2 Module29 e-text Cyclicvoltammetry.pdf	
	Amperometry	
	https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=944	
CO-4	Describe the principles of Atomic absorption spectroscopy Explain and	K1
	demonstrate the instrumentation of AAS. Analyse cations using AAS.	K2
	Assignment on Analysis of Zn ²⁺ , Cu ²⁺ , Pb ²⁺ , Cd ²⁺ using AAS (PO1.PO2,PO3,PO4)	K3

		K4
CO-5	State the principle of photoelectron spectroscopy	K1
	describe its instrumentation and list the application.	K2
	State the principle of Auger electron spectroscopy	K3
	Hypothesize Koopman's theorem	K6

		РО								
СО/РО	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
C01	3	2	1	2	2	2	3	1	1	1
CO2	3	1	1	1	1	1	2	1	1	1
CO3	3	1	1	2	1	1	2	1	3	1
CO4	3	1	1	1	1	1	2	1	1	1
CO5	3	1	1	1	2	1	2	1	1	1
SUB CODE PC5333	3	1	1	1	1	1	2	1	1	1
TOTAL PC5333	15	6	5	7	7	6	11	5	7	5

Course outline

UNIT-I

MACROMOLECULES

Polymerisation in homogeneous and heterogeneous phases – kinetics and mechanism of polymerization – addition and condensation – chain initiation, propagation and termination – chain transfer – Inhibition and retardation, molecular weight of polymers, molecular weight determination by light scattering, osmometry and viscometry, ultracentrifuge and gel permeation chromatography – Crystallinity of polymers – Glass transition temperature.

(18 hrs)

UNIT – II REACTIONS IN SOLUTION

Comparison of gas phase reactions with reactions in solutions, factors influencing reaction rates in solution - effect of dielectric constant and influence of ionic strength - Primary and secondary salt effect. Application of ARRT – Entropy of activation for reactions in solution.

UNIT – III

(18 hrs)

ELECTROANALYTICAL TECHNIQUES

Polarography: Introduction, Instrumentation, Ilkovic equation and its verification. Derivation of wave equation: Determination of half wave potential, qualitative and quantitative applications.

Applications of AC polarography, cyclic voltammetry and differential pulse voltammetry to the study of coordination compounds: Amperometry: Basic principles, instrumentation, nature of titration curves, and analytical applications.

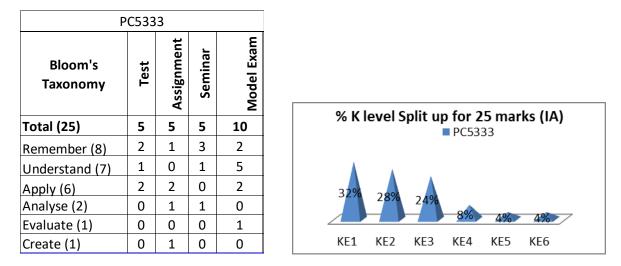
UNIT-IV (18 hrs)

ATOMIC ABSORPTION SPECTROSCOPY

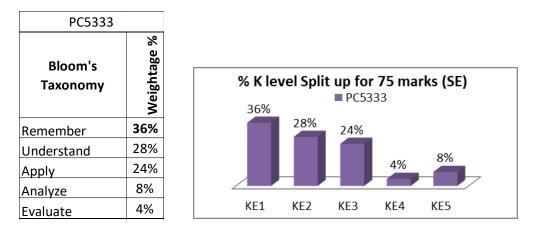
Principle – instrumentation – flame sources- hollow cathode lamp – Analysis of Zn^{2+} , Cu^{2+} , Pb^{2+} , Cd^{2+} . Flameless AAS for Hg^{2+} analysis – inductively coupled plasma (ICP) spectroscopy – introduction, instrumentation, interferences and applications.

UNIT-V

PHOTOELECTRON SPECTROSCOPY


Principle and technique of PES, Ultraviolet PES, X-ray PES, Koopman's theorem. Instrumentation, applications of ESCA, Auger electron spectroscopy –principle instrumentation and applications.

REFERENCE BOOKS


- 1. V. R. Gowarikar, N.V. Viswanathan and JayadevSreedhar "Polymer Science" New Age international (P) ltd., Publishers New Delhi, 2005.
- 2. Fred W. Billmeyer, JR "Text book of polymer science" A wiley interscience publication John wiley& sons, New Yark, 1994
- 3. Ayodhya sing "polymer Chemistry" campus Books, New Delhi, 2003

- 4. Jettery, Bassett, Mendham, Denney "Vogel's Text book of Quantitative chemical analysis", ELBS, 1997
- 5. Skoog, West, Holler "Fundamentals of Analytical Chemistry"
- F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry; 6th Ed.; Wiley Interscience: New York, 1988.
- J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry; 4th Ed.; Harper and Row: New York, 1983.
- 8. K. F. Purcell, and J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976.
- 9. D. F. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry; 3rd Ed.; Oxford University Press: London, 2001.
- 10. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.
- 11. W. L. Jolly, Modern Inorg. Chem., 2nd Ed., McGraw-Hill International Edition, 1991.
- 12. G. S. Girolami, T. B. Rauchfuss, and R. J. Angelici, Synthesis and Technique in Inorganic Chemistry, 3rd Ed., University Science Books, Sausalito, 1999.
- W. L. Jolly, The Synthesis and Characterisation of Inorganic Compounds, Prentice Hall, New Jersey, 1970.
- J.Rajaram and J.C. Kuriacose kinetics and mechanism of chemical Transformation, McMillan India Ltd, 1993.
- 15. Polymer Science, V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar.
- 16. Text book of Polymer Science, 3rd edition, Fred.W.Billmeyer, Jr.

CIE-Continuous	Internal	Evaluation	(25)	Marks)
-----------------------	----------	------------	------	--------

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI-4 M. Sc. CHEMISTRY PHYSICAL METHODS IN INORGANIC SPECTROSCOPY - (Core) SEMESTER IV

Paper No. : XX Code: PC5334

Max Marks: 75 Credits: 4

LEARNING OBJECTIVES

- 1. To learn the basic principles of molecular spectroscopy and its applications in structure determination
- 2. To understand the concept of structural determination of Inorganic compounds

Course Outcomes

СО	CO DESCRIPTION (After the completion of the course, the student would be able to)	Knowledge attributes
CO1	Tell what types of molecules would undergo vibrational transition and Raman spectra; summarize the selection rules for vibrational, rotational and Raman spectra ;	K1
	Explain Bohn-Oppenheimer approximation and state the conditions under which it fails.	K2
	Apply IR spectral data to distinguish between coordinated and uncoordinated water and anions and to identify the mode of binding of certain ligands.	 K3
CO2	Find the <i>Term symbols</i> representing different electronic energy levels in a molecule arising out of electron electron interaction; List the Racah parameters B & C; define selection rules for electronic transition and coditions under which they break down;	K1
	compare the energy levels of the same Term symbols in different weak field complexes using Orgel Diagram; weak field as well as strong field complexes using Tanabe-Sugano diagrams: explain the characteristics of Orgel diagrams and Tanabe-Sugano diagrams; demonstrate the effect of distortions on the d orbital energy levels	K2
	apply Orgel diagrams to predict and assign electronic transitions of only the weak field complexes and Tanabe-Sugano diagrams for weak as well as strong field complexes;	

	calculate beta and 10Dq for simple octahedral complexes of Co and Ni;	К3
	distinguish between charge transfer spectra and d-d transitons; analyze the effect of solvent polarity on charge transfer spectra	 K4
CO3	 Define Nuclear Magnetic Resonance, Explain the concepts of Nuclear Magnetic Resonance, chemical shift, Nuclear Overhauser effect, double resonance, chemical exchange, Lanthanide shift reagents, stereochemical non-rigidity and fluxionality. Identify the factors contributing to chemical shift, 	K1 K2 K4
	Distinguish between the experimental techniques (Continuous	K3
	wave CW and Fourier Transform (FT) Analyze the NMR of paramagnetic complexes	K4
	Test the use of NMR in the detection of fluxionality of trigonal	K5
	bipyramidal molecules such as [Ti(acac)Cl with coordination number 6.	К6
CO4	Define electron paramagnetic resonance; Explain the principle of EPR, peaks in the EPR spectrum,	K1
	hyperfine splitting of radicals namely methyl, ethyl, phenyl, naphthyl and Bis(salicylaldimine) copper (II)- Identify the factors affecting the magnitude of g values of	K2
	transition metal ions; Examine the interactions affecting the energies of unpaired	К3
	electrons in transition metal complexes; Explain z ero field splitting, and Kramers degeneracy, anisotropy in the g value and hyperfine coupling constant, nuclear quadrupolar interaction, spin Hamiltonian, line widths in solid state and electron delocalization Evaluate EPR as a structural elucidation technique on the basis of its applications	K4
		K5
CO5	Define the terms NQR and Mossbauer Spectroscopy-	K1
	Explain the energies of quadrupole transitions -effect of magnetic field on the spectra, electric field gradient and molecular structure, the interpretation of NQR data leading to structural information of the PCl5 ₅ , TeCl4 ₄ , Doppler shift, recoil energy. Mossbauer spectra: Isomer shift, factors affecting isomer shift, quadrupole interaction, magnetic interaction, structural determination of the inorganic compounds and complexes	

					I	20				
CO/PO	Disciplinary knowledge and skills	2 skilled communicator	ے critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	o Ethical awareness and reasoning	National and international Perspective	10 Lifelong learners
CO1	3	2	2	1	2	1	2	2	2	1
CO2	3	2	2	2	3	1	2	2	2	1
CO3	3	2	2	1	2	1	2	1	2	1
CO4	3	2	2	1	2	1	2	1	2	1
CO5	3	2	2	2	3	1	2	1	2	1
PC 5334- AVG	3	2	2	1	2	1	2	1	2	1
PC 5334- TOTAL	15	10	10	7	12	5	10	7	10	5

Course outline UNIT – I

(18 hrs)

ROTATIONAL AND VIBRATIONAL SPECTROSCOPY

Vibrating diatomic molecule: energy of diatomic molecules -simple harmonic oscillator anharmonic oscillator energy levels- selection rules,. Diatomic vibrating rotator: Born-Oppenheimer approximation – break down -vibration-rotation spectra, selection rules, P, Q, R branches. Vibrations of polyatomic molecules- fundamental vibrations – Overtones- influence of rotation on the spectra. Raman spectroscopy:Classical and quantum theory- - selection rules-Raman effect s- Application of IR to the following: i) Distinction between a) Ionic and coordinate anions such as NO_3^-, SO_4^{-2-} and SCN b) Lattice and coordinated water. ii) Mode of bonding of ligands such as urea, dimethylsulphoxide and hexamethylphosphoramide.

UNIT - II

ELECTRONIC SPECTRA OF TRANSITION METALS

Electron –electron interactions and term symbols -Racah parameters B and C.-spin orbit coupling in free ions-Selection rules and the intensities of transition- breakdown of selection rules -Orgel diagram –Characteristics – prediction and assignment of transitions for d^n weak field cases. Use of Orgel diagram–Calculation of β and 10Dq for simple octahedral complexes of Co and Ni Tanabe – Sugano diagrams – characteristics – Prediction and assignment of transition for weak field and strong field d^n systems –Effect of distortions on the d-orbital energy levels.Charge transfer spectra in electronic spectra.- effect of solvent polarity

UNIT - III

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Nuclear Magnetic Resonance Spectroscopy: Introduction to Nuclear Magnetic Resonance, Chemical shift, Mechanism of electron shielding and factors contributing to the magnitude of chemical shift, Nuclear overhausser effect, Double resonance, Chemical exchange, Lanthanide shift reagents and NMR spectra of paramagnetic complexes. Experimental technique(CW and FT). Stereochemical non-rigidity and fluxionality: Introduction, use of NMR in its detection, its presence in trigonal bipyramidal molecules(PF₅), Systems with coordination number six (Ti(acac)₂Cl₂, Ti(acac)₂Br₂, Ta₂(OMe)₁₀,).

UNIT-IV

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

Principle - presentation of the spectrum, nuclear hyperfine splitting in isotropic systems. Hyperfine splitting of radicals, viz., methyl, ethyl, phenyl, naphthyl and Bis(salicylaldiminecopper(II) – factors affecting the magnitude of the 'g' values of transition metal ions - interactions affecting the energies of unpaired electrons in transition metal ion complexes. Zero-field splitting and Kramer's degeneracy - Anisotropy in the 'g' value anisotropy in hyperfine coupling constant-nuclear quadrupolar interaction - Spin Hamiltonian-Line widths in solid state –electron delocalization-applications of EPR.

(18 hrs)

(18 hrs)

(**18hrs**)

UNIT - V

NQR AND MOSSBAUER SPECTROSCOPY

Introduction-energies of quadrupole transitions -effect of magnetic field on the spectra, electric field gradient and molecular structure – Interpretation of NQR data, Structural information of the following: PCl₅, TeCl₄, Na⁺ GaCl₄ - , BrCN, HIO₃ and Hexahalometallates

Principles of Mossbauer spectroscopy: Doppler shift, recoil energy.Mossbauer spectra: Isomer shift, factors affecting isomer shift, quadrupole interaction,magnetic interaction - applications – isomer shift and quadrupole splitting . Application of MB spectroscopy in structural determination of the following: i) High spin Fe (II) and Fe (III) halides FeF₂, FeCl₂.2H₂O, FeF₃, FeCl₃.6H₂O. Low spin Fe(II) and Fe(III) Complexes-Ferrocyanides, Ferricyanides, Prussian Blue. ii) Iron carbonyls. Fe(CO)₅, Fe₂(CO)₉ and Fe₃(CO)₁₂ iii) Inorganic Sn(II) and Sn(IV) halides.

REFERENCE BOOKS

- 1. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.
- P. Atkins and J. de Paula, Physical Chemistry, 7th Ed., Oxford University Press, Oxford, 2002.
- 3. I. N. Levine, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and coordination Compounds, Part B: 5th Ed., John Wiley & Sons Inc., New York, 1997.
- A. Rahman, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York, 1986.
- 6. J. A. Weil, J. R. Bolton and J. E. Wertz, Electron Paramagnetic Resonance; Wiley Interscience, 1994.
- C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000.
- 8. D. F. Shriver and P. W. Atkins, Inorg. Chem., W. H. Freeman and Co, London, 1999.
- 9. F. A. Cotton, G.Wilkinson, C.Murillo and M.Bochman, Advanced Inorg. Chemistry, 6th ed., John Wiley, New York, 1999.
- 10. T. Moeller, Inorganic Chemistry: A Modern Introduction, Wiley, New York, 1990.
- 11. S.H.Maron and J.B. Lando, Fundamentals of Phys. Chem., Macmillan Ltd., NY, 1996.
- 12. P.W. Atkins, Physical Chemistry, Oxford University Press, 1978.

F	C533	4	-	-	
Bloom's Taxonomy	Test	Assignment	Seminar	Model Exam	% K level Split up for 25 marks (IA)
Total (25)	5	5	5	10	
Remember (7)	1	1	2	3	
Understand (6)	1	0	1	4	
Apply (5)	2	2	0	1	28% 24%
Analyse (4)	0	1	1	2	2470 20% 16%
Evaluate (2)	1	0	1	0	
Create (1)	0	1	0	0	KE1 KE2 KE3 KE4 KE5 KE6

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PC5334		
Bloom's Taxonomy	Weightage %	% K level Split up for 75 marks (SE) ■ PC5334 32%
Remember	32%	24% 20%
Understand	24%	
Apply	20%	
Analyze	16%	
Evaluate	8%	KE1 KE2 KE3 KE4 KE5

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI-4

M. Sc. CHEMISTRY ANALYTICAL CHEMISTRY PRACTICALS-IV- (Core) Semester- IV

Paper No. : XXI Code: PC53335 Max Marks: 75 Credits: 4

LEARNING OBJECTIVES

- 1. To learn the basic analytical methods and to have a sound knowledge of chemistry involved in chemical analysis.
- 2. To know the principle of different chromatographic techniques in separation of mixture of ions.
- 3. To learn the analytical concepts involved in estimation of certain common chemicals used in day to day life

Course Outcomes

CO No.	Course outcomes	POs
	Upon completion of the course, students will be able to	addressed
CO-1	Recall Beer-Lambert Absorption law	K1
	Outline color of transition metal complexes	K2
	Experiment with photoelectric colorimeter	K3
	Analyze the given metal ion colorimetrically	K4
	Estimate the amount of metal ion present in the given solution	K5
	Viva: (PO3 and PO4)	
	Web resources	
	https://phet.colorado.edu/en/simulation/beers-law-lab	
	https://www.youtube.com/watch?v=LxgZsMhuyNM&t=17s	
	(courtesy) (PO9,PO10)	
CO-2	Describe the types of chromatography	K1
	Demonstrate paper, thin layer and ion-exchange	K2
	chromatographic techniques	K3
	Identify the metal ions by paper and ion-exchange	
	Chromatography	
	Viva: (PO3 and PO4)	
	Web resources	
	https://www.youtube.com/watch?v=FXw6PiyVWgY	
	(courtesy)	
	https://www.youtube.com/watch?v=iPpy4khqtks	
	(courtesy)	

	https://www.youtube.com/watch?v=qdmKGskCyh8	
	(courtesy) (PO9,PO10)	
CO-3	Find suitable methods for the estimation	K1
	Explain the principle behind each estimation	K2
	Make use of different types of titrimetric methods for	K3
	Estimation	
	Group Activity (PO5)	
	Web resources	
	https://www.youtube.com/watch?v=ghvF0eYi6rA&t=57s	
	(courtesy)	
	https://www.youtube.com/watch?v=oHVSCrZ3Aj4	
	(courtesy)	
	https://www.youtube.com/watch?v=UYnBzwEP5XU&t=5s	
	(courtesy) (PO9,PO10)	
CO-4	Tell about back titration	K1
	Demonstrate the estimation of Aspirin	K2
CO-5	Recall what dolomite ore is	K1
	Explain the principle of EDTA titration	K2
	Analyze dolomite ore by EDTA titration	K3
	Determine the strength of calcium and magnesium ions	K4

						PO				
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	1	3	2	2	1	2	1	2	1
CO2	3	2	3	2	2	1	2	2	3	1
CO3	3	2	1	1	2	1	1	1	2	1
CO4	3	2	2	2	2	1	3	2	1	1
CO5	3	1	1	1	1	1	1	1	1	1
PC-5335 AVG	3	2	2	2	2	1	2	1	2	1
PC-5335 TOTAL	15	8	10	8	9	5	9	7	9	5

Course outline

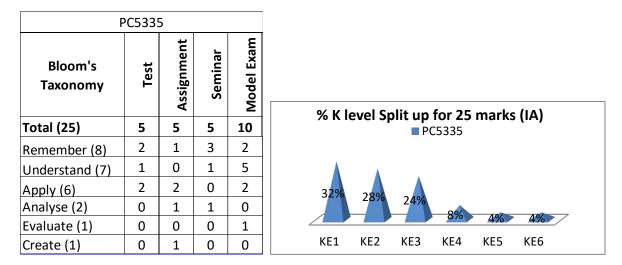
1. Colourimetric Estimations:

- 1. Estimation of Copper
- 2. Estimation of Nickel
- 3. Estimation of iron

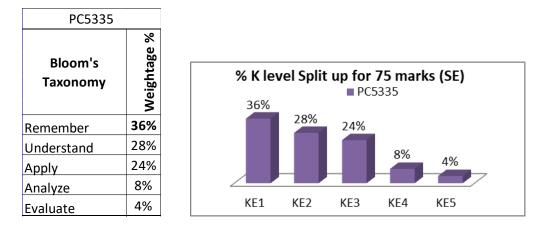
2. Chromatographic separations and calculation of Rf value.

- (i) Separation of a mixture of two metal ions by Paper chromatography.
- (ii) Separation of green leaf pigments by Thin layer chromatography.
- (iii) Separation of metal ions by ion exchange chromatography.

3. *Estimation


- (i) Estimation of bleaching powder
- (ii) Estimation of Aspirin
- (iii) Estimation of ascorbic acid
- (iv) Estimation of H_2O_2

4. *Analysis of Dolomite ore


*Only for Internal Assessment

REFRENCES

- 1. V. K. Srivastava, K.K. Srivastava, Introduction to Chromatography: Theory and Practice, S. Chand and Sons., New Delhi, 1987.
- Vogel's Textbook of Practical organic chemistry, 5th Ed., ELBS/Longman, England, 1996a
- 3. Vogel's Textbook of quantitative chemical analysis, 5th Ed., ELBS/Longman, England

ESE- End Semester Examination (75 Marks; Weightage 75 %)

QUEEN MARY'S COLLEGE (AUTONOMOUS) CHENNAI – 4 M. Sc. CHEMISTRY- BATCH IV DISSERTATION & VIVA VOCE- (Elective) Semester- IV

Paper No:XXII Code: PE5315

Max. Marks: 75 Credits: 3

LEARNING OBJECTIVES

The target of the course is to

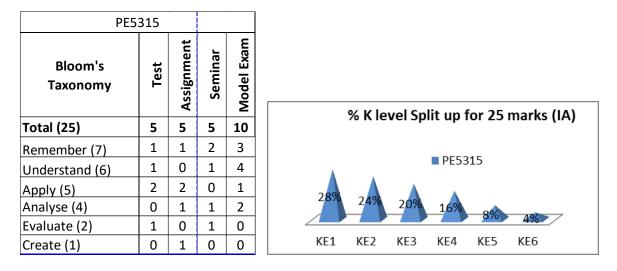
1. introduce students to research and make them efficient in literature survey.

2. learn the art of review and report writing.

- 3. expose students to the various experimental techniques.
- 4. give hands on training with analytical instruments.
- 5. learn interpretation of experimental outcomes and assess future perspectives.

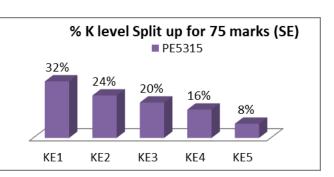
Course Outcomes

CO	Course outcomes	POs
No.	Upon completion of the course, students will be able to	addressed
CO-1	List out the various resources available pertaining to a selected topic Record the findings from various resources available	K1
	Chart out an outline of basic work done in a chosen field Seminar on research topic (PO3) to be presented using power point (PO7)	K2
	Along with question session (PO4) e-resources (PO9)	K3
	http://www.nano.gov http://www.gscn.net/about/Eindex.html	
CO-2	State in detail about the evolution and progress of a selected research topic	
	Explain about the reason behind choice of research topic	K1
	Prepare a report on research work reported hitherto and innovations that could	K2
	be introduced	K3
	Correlate the need for novelty in the specified work with innovations required.	K4
	Assignment / Seminar (PO1, PO3) on review work done	
	Group avtivity (PO5) – review to be done and reported on various topics	
CO-3	Identify suitable experimental protocols and choose viable methods	K1
	Synthesise novel products using the available resources.	K2
	Compare the advantages and disadvantages of the existing experimental methods	


	available.	
	Propose novel synthetic approach to a problem	K3
	Validate experimental findings with theoretical concepts studied.	K4
	Internship at http://schrodinger.zoom.us/skype	K5
		K6
CO-4	Identify the various characterization methods	K1
	Compare results obtained by different instrumentation techniques and choose the best.	K2
	Learn the appropriate experimental technique by hands on experience.	К3
	Select the appropriate conditions for improvisation of results.	
	Assess the credibility of the work done on the basis of percentage of error in results obtained	K4
	Visit to instrumentation facility centre	K5
CO-5	To reproduce the experimental results with minimum error limits.	K1
	To interpret reasons for anomaly observed if any and discuss methodologies to improve wherever necessary.e resources (PO9)	K2
	https://chemdraw-pro.software.informer.com/8.0 (PO7) mock viva given using digital medium and questions to be defended (PO3, PO7 and PO3)	

						PO				
CO/PO	1 Disciplinary knowledge and skills	2 skilled communicator	3 critical thinker and problem solver	4 sense of inquiry	5 Team player / worker	6 skilled project manager	7 Digitally efficient	8 Ethical awareness and reasoning	9 National and international Perspective	10 Lifelong learners
CO1	3	2	3	3	1	2	2	1	3	1
CO2	3	2	3	2	3	2	2	2	2	1
CO3	3	1	2	2	2	2	2	1	3	1
CO4	3	2	2	3	2	2	1	2	2	1
CO5	3	2	3	3	2	1	3	2	3	1
PC5329-AVG	3	2	3	3	2	2	2	2	3	1
PC5329- TOTAL	15	9	13	13	10	9	10	8	13	5

Course Outline


- **1.LITERATURE SURVEY**
- 2. REVIEW AND REPORT WRITING
- 3. EXPERIMENTAL METHODS
- 4. INSTRUMENTATION
- 5. RESULTS AND DISCUSSION

CIE-Continuous Internal Evaluation (25 Marks)

ESE- End Semester Examination (75 Marks; Weightage 75 %)

PE5315	
Bloom's Taxonomy	Weightage %
Remember	32%
Understand	24%
Apply	20%
Analyze	16%
Evaluate	8%

