

QUEEN MARY'S COLLEGE (AUTONOMOUS), CHENNAI – 600 004

Affiliated to University of Madras Re-accredited by NAAC with 'A' Grade

PG & RESEARCH DEPARTMENT OF PHYSICS

M.Sc PHYSICS

SYLLABUS With effect from the Academic Year 2024 - 2025 Onwards

QUEEN MARY'S COLLEGE (AUTONOMOUS) Chennai - 600 004.

Affiliated to University of Madras Re-accredited by NAAC with 'A' Grade

	TITLE	PAGE NO.
1	MINUTES OF THE MEETING	iv
2	INTRODUCTION TO THE PROGRAMME	vii
3	CBCS FOR PG PROGRAMME	viii
4	CURRICULUM STRUCTURE – CORE	ix
5	CURRICULUM STRUCTURE - DSE, GE & SEC	Х
6	INTERNAL EVALUATION METHODOLOGY FOR ALL THE PROGRAMS	XII
7	EXTERNAL EVALUATION	XIII
8	TEACHING METHODOLOGY	xiv
9	PEO & PSO	xiv
10	PROGRAMME OUTCOMES	XV
11	PG COURSE OUTCOME	xvi
12	TEMPLATE	xvii
13	PG COURSES OFFERED WITH CREDITS & HOURS	3
14	CLASSICAL AND STATISTICAL MECHANICS	4
15	MATHEMATICAL PHYSICS-I	7
16	PRACTICALS I - GENERAL -I	10
17	INTEGRATED ELECTRONICS AND MICROPROCESSOR	12
18	SPACE SCIENCE	15
19	GENERAL NUCLEAR PHYSICS	18
20	INSTRUMENTATION TECHNIQUES	21
21	QUANTUM MECHANICS –I	24
22	MATHEMATICAL PHYSICS-II	27
23	PRACTICALS II- ADVANCED ELECTRONICS	30
24	ADVANCED NUCLEAR PHYSICS	32
25	ADVANCED ELECTRONICS	35
26	PHYSICS AND ARCHAEOLOGY	38

CONTENTS

27	ASTROPHYSICS	41
28	COMPUTATIONAL PHYSICS I -NUMERICAL METHODS	43
29	QUANTUM MECHANICS-II	46
30	ELECTROMAGNETIC THEORY	49
31	PRACTICALS III- GENERAL -II	52
32	CONDENSED MATTER PHYSICS	55
33	PHYSICS OF BIOLOGICAL SYSTEMS	58
34	MEDICAL INSTRUMENTATION	61
35	COMPUTATIONAL PHYSICS II- C PROGRAMMING	64
36	METHODS OF SPECTROSCOPY	66
37	PHYSICS OF FUNCTIONAL MATERIALS	69
38	PRACTICALS IV- MICROPROCESSOR, MICROCONTROLLER AND C PROGRAMMING	72
39	PROJECT	75
40	BASICS OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE	76
41	INDUSTRIAL TRAINING / SELF LEARNING COURSE	79

PG AND RESEARCH DEPARTMENT OF PHYSICS

I. MINUTES OF THE BOARD MEETING

The meeting of the Board of studies was held on **28.08.2024**. The proposed new syllabi were presented before the board.

MEMBERS OF THE BOARD

1. DR. HEMAMALINI RAJAGOPAL ASSOCIATE PROFESSOR and HEAD PG and RESEARCH DEPARTMENT OF PHYSICS QUEEN MARY'S COLLEGE (A), CHENNAI - 4

2. DR. J.PADMANABHAN

CHENNAI - 2

SUBJECT EXPERT

CHAIR PERSON

ASSOCIATE PROFESSOR OF PHYSICS GOVT ARTS COLLEGE FOR MEN, NANDANAM CHENNAI - 35

SUBJECT EXPERT

3. MRS.DHARMA SWAMINATHAN ASSISTANT PROFESSOR OF PHYSICS QUAID-E-MILLETH COLLEGE FOR WOMEN

INTERNAL MEMBERS (ALL THE MEMBERS OF STAFF)

4. DR.(MRS). J. SRIVIDYA	-	ASSOCIATE PROFESSOR
5. DR. (MRS). G. USHA	-	ASSOCIATE PROFESSOR
6. DR.(MRS). JOVITA THEODORE	-	ASSOCIATE PROFESSOR
7. DR. (MRS). D. JAYALAKSHMI	-	ASSOCIATE PROFESSOR
8. DR.(MRS). R. VASANTHI	-	ASSOCIATE PROFESSOR
9. DR. (MRS). R. RAJAKUMARI	-	ASSOCIATE PROFESSOR
10. DR. (MRS). V. NIRMALA	-	ASSOCIATE PROFESSOR
11. DR. MRS. M. P. SAVITHIRI	-	ASSOCIATE PROFESSOR
12. DR. (MRS). A. ANURADHA	-	ASSOCIATE PROFESSOR
13. DR. (MRS). S. SAROJINI	-	ASSOCIATE PROFESSOR
14. DR.(MRS). R.VANATHI VIJAYALAKS	HMI -	ASSOCIATE PROFESSOR
15. DR.(MRS). K. S. EZHILARASI	-	ASSOCIATE PROFESSOR
16. DR. (MRS). B. ANITHA	-	ASSOCIATE PROFESSOR
17. DR. (MRS). S. MAHALAKSHMI	-	ASSISTANT PROFESSOR
18. DR. (MRS). M. LOGANAYAKI	-	ASSISTANT PROFESSOR
19. MS. B.JIJILA	-	DEPT. ALUMNI
20. MS. B. CHARUMATHI	-	STUDENT REPRESENTATIVE
21. MR.V.LOGANATHAN	-	INDUSTRY REPRESENTATIVE

CHANGES MADE IN THE SYLLABUS

Mathematical Physics - I

Topics Included : Expression for gradient, divergence and curl in spherical polar coordinates-Deduction of Gauss' law from Gauss divergence theorem IN UNIT I

Dirac-delta function-some representations - properties- – Green's function for one dimensional case IN UNIT II

<u>Mathematical Physics – II</u>

Topics Included: Evaluation of definite integrals of trigonometric functions round the Unit circle only–Problems IN UNIT I. Dirac-delta function-some representations - properties- – Green's function for one dimensional case IN UNIT II

Electromagnetic Theory

Topics Included: Multipole expansion of electric fie IN UNIT I. Wave guides IN UNIT IV

Physics of Functional Materials

Materials science paper is renamed as physics of functional materials and suitably restructured. **Topics Included:** This unit has become Material Properties and Requirements instead of Nanomaterials IN UNIT I. This unit has been replaced by Fundamentals of Nanoscience and Nanomaterialsas its inevitable part of materials science in the present research scenario IN UNIT II. This unit has become a synthesis of Nanomaterials IN UNIT III. This unit has become Advanced material characterization techniques IN UNIT IV. This unit has become New materials IN UNIT V.

Topics Deleted : Nanomaterials FROM UNIT I. New materials FROM UNIT II. Ceramics FROM UNIT III. Polymers FROM UNIT IV. Units II and V have been swapped with some changes.

General Nuclear Physics

Topics Included

Mirror Nuclei method has been included IN UNIT I. UNIT II unit has become a Nuclear model. UNIT III has become Nuclear reactions and Nuclear energy. UNIT IV has become Nuclear decay. UNIT V has become Elementary particle physics.

Topics Deleted:

The radioactivity in Unit II has been moved to Unit IV as Nuclear decay. Nuclear models in this unit has been removed as it is now become unit II. UNIT IVt has been removed

Advanced Nuclear Physics

Topics Included

UNIT I title has been changed. Some more nuclear models have been introduced along with the existing ones IN UNIT II. Instead of Heavy ion nuclear reaction, it becomes a special type of nuclear reaction that includes heavy ion reaction so that the students can learn about special nuclear reactions in IN UNIT III. Atmospheric Neutrino has been included IN UNIT IV.

Topics Deleted:

UNIT III has been completely removed

Space Science Topics Included

The solar system, the features and atmospheric layers of the sun have been incorporated IN UNIT I. The Chandrasekhar limit has been included next to the white dwarf IN UNIT II. Chandrasekhar limit moved to unit II.

Topics Deleted: Chandrasekhar limit removed FROM UNIT III .

Numerical Methods and C programming paper is split into two elective papers as numerical methods separately and C programming separately under computational Physics I and Computational Physics II

II. INTRODUCTION TO THE PROGRAMME

- 1. MSc in Physics is a 2-year postgraduate degree program
- 2. The Programme focuses on advanced study and research in the field of Physics.
- 3. This programme is generally chosen by students who wish to get in-depth knowledge and expertise in the specific areas of Physics.
- 4. Provide students with an advanced knowledge of Physical laws and research
- 5. Can gain a set of incredibly useful skills that make the students attractive to a wide range of employers. A physics degree trains the students to become an expert problem solver.
- 6. To explore range of topics and develop a strong foundation in Physics
- 7. The students will be trained to work at the leading edge of ideas in science, technology, academia, government and other industrial sectors

III. CHOICE BASED CREDIT SYSTEM FOR P.G. PROGRAMME

The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising Core, Elective and Skill based courses.

The PG programme consists of a number of courses. The 'course' is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a ' paper' in the conventional sense. The following are the various categories of courses suggested for the PG PROGRAMME.

It includes Core Courses (CC), Elective Courses (EC) and Skill Enhancement Courses (SEC).

Core Course (CC): They are the basic courses compulsorily required for each of the programme of study. It is related to the subject of programme in which the candidate gets her degree. The number of Core Courses shall be 13 for All PG Programme.

Elective Course (EC): Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline. The number of Elective (Discipline Specific/Generic) Courses shall be 6 for the PG Programme.

Discipline Specific Elective (DSE) Course: Elective courses may be offered by the main discipline/subject of study is referred to as Discipline Specific Elective.

Generic Elective (GE) Course: An elective course chosen generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic Elective.

Skill Enhancement Courses: In view of enhancing the employability skills of the students 3 courses are given.

Internship: All PG Program Students have to undergo **Summer Training** at the end of the II semester and submit a report which will be evaluated in the III Semester for which 2 Credits will be offered.

PG AND RESEARCH DEPARTMENT OF PHYSICS IV. CURRICULUM STRUCTURE - CORE

Course No.	Sem.	Title of the Course	Sub. Code	CIA	ESE	Total	Credits
CORE I	Ι	CLASSICAL AND STATISTICAL MECHANICS	24PPYC01	25	75	100	5
CORE II	Ι	MATHEMATICAL PHYSICS - I	24PPYC02	25	75	100	5
CORE III	Ι	PRACTICALS I – GENERAL I	24PPYC03	25	75	100	5
CORE IV	II	QUANTUM MECHANICS -I	24PPYC04	25	75	100	5
CORE V	II	MATHEMATICAL PHYSICS - II	24PPYC05	25	75	100	5
CORE VI	II	PRACTICALS II- ADVANCED ELECTRONICS	24PPYC06	25	75	100	5
CORE VII	III	QUANTUM MECHANICS -II	24PPYC07	25	75	100	5
CORE VIII	III	ELECTROMAGNETIC THEORY	24PPYC08	25	75	100	5
CORE IX	III	PRACTICALS III – GENERAL II	24PPYC09	25	75	100	5
CORE X	III	CONDENSED MATTER PHYSICS	24PPYC10	25	75	100	5
CORE XI	IV	METHODS OF SPECTROSCOPY	24PPYC11	25	75	100	5
CORE XII	IV	PHYSICS OF FUNCTIONAL MATERIALS	24PPYC12	25	75	100	5
CORE XIII	IV	PRACTICALS IV- MICROPRICESSOR, MICROCONTROLLER AND C PROGRAMMING	24PPYC13	25	75	100	5
CORE XIV	IV	PROJECT	24PPYPJT	25	75	100	5

V. CURRICULUM STRUCTURE -DISCIPLINE SPECIFIC ELECTIVE

Cour se No.	Se m.	Title of the Course	Sub. Code	CIA	ESE	Total	Credits
DSE- I	Ι	INTEGRATED ELECTRONICS AND MICROPROCESSOR / SPACE SCIENCE	24PPYE1A 24PPYE1B	25	75	100	3
DSE- II	Ι	GENERAL NUCLEAR PHYSICS / INSTRUMENTATION TECNIQUES	24PPYE2A 24PPYE2B	25	75	100	3
DSE- III	II	ADVANCED NUCLEAR PHYSICS / ADVANCED ELECTRONICS	24PPYE3A 24PPYE3B	25	75	100	3
DSE- IV	IV	INDUSTRIAL TRAINING / SELF LEARNING COURSE	24PPYE4A 24PPYE4B	25	75	100	3

V. CURRICULUM STRUCTURE -GENERIC ELECTIVE

Course No.	Se m.	Title of the Course	Sub. Code	CI A	ESE	Total	Credits
GE-I	П	PHYSICS AND ARCHAEOLOGY/ ASTROPHYSICS	24PPYG1A 24PPYG1B	25	75	100	3
GE-II	III	PHYSICS OF BIOLOGICAL SYSTEMS/ MEDICAL INSTRUMENTATION	24PPYG2A 24PPYG2B	25	75	100	3

V. CURRICULUM STRUCTURE - SKILL ENHANCEMENT COURSES

Course No.	Se m.	Title of the Course	Sub. Code	CIA	ESE	Total	Credits
SEC-I	II	COMPUTATIONAL PHYSICS I-NUMERICAL METHODS	24PPYS01	25	75	100	3
SEC-II	III	COMPUTATIONAL PHYSICS II- C PROGRAMMING	24PPYS02	25	75	100	3
SEC-III	IV	BASICS OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE	24PPYS03	25	75	100	3

V. CURRICULUM STRUCTURE – INTERNSHIP AND EXTENSION ACTIVITY

Course No.	Se m.	Title of the Course	Sub. Code	CIA	ESE	Total	Credits
INT	III	INTERNSHIP	24PINT	-	100	100	2
EXT	IV	EXTENSION ACTIVITY	24PEXT	_	100	100	1

CATEGORY WISE CREDIT DISTRIBUTION

2024 - 2025

CREDIT DISTRIBUTION FOR PG PROGRAMMES - 97 CREDITS						
TYPE OF COURSE	NO.OF COURSES	CREDITS PER COURSE	TOTAL			
CORE	13	5	65			
PROJECT	1	5	5			
ELECTIVE	6	3	18			
SEC	3	2	6			
SUMMER INTERNSHIP	1	2	2			
EXTENSION ACTIVITY	1	1	1			
TOTAL	25	18	97			

- Week 6 Working Day Order
- 15 Weeks per Semester
- Number of Units in the Syllabus of Courses : 5

- Number of Units in the Syllabus of Elective Courses : 5
- Maximum Marks per Paper : 100

VI. INTERNAL EVALUATION METHODOLOGY FOR ALL THE PROGRAMS

- Quiz programme
- Periodical class tests
- Objective type assignments
- Problem solving assignments (Individual / Group)
- Seminar based on lecture notes available online / Using Power point
- Online exercises from open source/resource
- E-quiz
- Group Discussion or debate
- Question session
- Descriptive assignments with creative questions

QUANTIFICATION OF INTERNAL EVALUATION - PG THEORY

- Minimum 2 Tests
- Minimum 2 Assignments
- Model Examination for 75 Marks reduced to 10 Marks

TEST	ASSIGNMENT	SEMINAR	MODEL EXAM	TOTAL	CONTINUOUS INTERNAL ASSESSMENT
10	10	5	75	100	-
		Reduc	ced To		
5	5	5	10		25

VII. EXTERNAL EVALUATION

QUESTION PAPER PATTERN

Maximum Marks: 100

Internal Assessment: 25

External Evaluation: 75

Overall Aggregate should be 50%

QUESTION PAPER PATTERN FOR CORE, ELECTIVE & SEC COURSES (EFFECTIVE FROM THE ACADEMIC YEAR 2024 - 2025)							
Part – A 5 x 2 = 10 Marks Answer all the questions		Part – B 5 x 5 = 25 Marks Answer all the questions		Part – C 4× 10 = 40 Marks Answer any Four questions			
Question	Unit	Question	Unit	Question	Unit		
1	Ι	6(a) or 6(b)	Ι	11	Ι		
2	II	7(a) or 7(b)	II	12	II		
3	III	8(a) or 8(b)	III	13	III		
4	IV	9(a) or 9(b)	IV	14	IV		
5	V	10(a) or 10(b)	V	15	V		
				16	(Any Unit)		

PROJECT EVALUATION

PROJECT					
INTERNAL	25				
EXTERNAL	75				
VIVA	25				
DISSERTATION	50				
TOTAL	100				

VIII. TEACHING METHODOLOGIES ADOPTED FOR THE PG PROGRAM

- 1. Chalk Board and Lecture
- 2. Text Book Learning
- 3. Digital Learning- Online PPt Lecture Notes
- 4. Video Lecture Online You Tube Google Meet Classroom
- 5. Interactive Sessions
- 6. Student Seminar
- 7. Lecture By Subjects Experts

IX. PG PROGRAMME EDUCATIONAL OBJECTIVES (PEO):

On par with the institutional vision and mission, M.Sc Physics Programme aims at imparting knowledge and skills to the students enabling them to

- Pursue higher education, enrich research habits and procure job opportunities through strong and ample learning of the core and related subjects with adequate exposure to digital literacy and training to communicate their original ideas effectively. (PEO1)
- Probe and utilize appropriate resources and tools to be life long learners, demonstrate analytical skills and befit globally competent. (PEO2)
- Improve leadership qualities in creating successful and self-confident citizens with rational thinking and scientific temper. (PEO3)

PG PROGRAMME SPECIFIC OUTCOMES (PSO):

After completing M.Sc. Physics Programme, the student would be able to

- Transmit fundamental knowledge in the core subjects, explore new pathways in experimental and theoretical physics, perceive new ideas and analogy in every approach towards learning, choose an area of research and pursue higher education (**PSO1: PO1**).
- Utilize digital tools and e-resources available as open-source for knowledge addition, learning and create innovative applications (**PSO2:PO7**).

- Critically analyze any problem scientifically, accompanied by original and diversified thinking and perform duties successfully with rational thinking and scientific temper (**PSO3: PO3**).
- Exhibit good interpersonal skills through effective communication and interactions, propose ideas and participate in core discussions and conferences, adopt better perspective towards life with confidence and remain a responsible citizen (**PSO4: PO2**).
- Foster inquiring qualities, focus upon deep self-learning, thrive with the quest of enhanced and self-disciplined learning and raise queries of interest (**PSO5: PO4**).

X. PG PROGRAM OUTCOMES (PO):

Program Outcomes are statements about the knowledge, skill and attitudes. It deals with the general aspects of graduation for a particular program, and the competencies and expertise a graduate will possess after completion of the program.

PO1. **Disciplinary Knowledge and Skills:** To develop a science graduate highly productive and constructive unit of society by acquiring a fundamental, systematic, coherent understanding of the academic field of Computer Science and its related disciplinary areas .

PO2. **Skilled communicators:** To develop communication and leadership skills and overall personality development of the students.

PO3. **Critical Thinker And Problem Solver:** Apply critical thinking which improves cognitive skills and logical decision making as problem solvers.

PO4. Sense of Enquiry: Develop sense of enquiry and exhibit professionalism.

PO5. Team Player / Worker: To promote team work and time management.

PO6. **Skilled Project Managers:** Understand the flow of project/plan, effective interaction with team members, method and means for its implementation.

Understand the flow of projects/experimentation, effective interaction with team members, method and means for its implementation.

PO7. **Digitally Efficient:** Use information communication technology to gather knowledge and update scientific information and skills through ICT tools.

PO8. Ethical Awareness Reasoning: Apply ethical principles and commitment towards professional ethics and responsibility.

PO9. **National And International Perspective:** Participate in global citizen science projects using e-learning materials as well execute proposals of national and international importance.

PO10. **Lifelong Learners:** Learn, unlearn, relearn as well seeks solutions to real life problems.

XI. PG COURSE OUTCOMES (CO)

- The curriculum has been designed in such a manner by taking into account the ideologies of Blooms taxonomy with strong and adequate skill, knowledge and education base.
- Due weightage to creativity is given for internal assessment. The rational correlation between CO's and PO's which enhance the strength and value of our curriculum.
- Bloom's taxonomy is a hierarchical ordering of cognitive skills. It represents different levels of learning and it should be utilized scientifically in a systematic manner.

There are six levels of cognitive learning

- 1. Knowledge remembering information (K1)
- 2. Comprehension- explaining the meaning of information (K2)
- 3. Application using abstraction in concrete situation (K3)
- 4. Analysis- breaking down a hole into component parts (K4)
- 5. Evaluation (K5)

6. Creative component in activity- comprehend, construct (new) & compile innovative thinking and ideas (K6)

XII. Template for P.G Programme 2024

Sem.I	Credit	Hrs	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credit	Hours
Core-I	5	6	. Core-IV	5	6	Core-VII	5	6	Core-XI	5	6
Core-II	5	6	Core-V	5	6	Core-VIII	5	6	Core-XII	5	6
Core – III	5	6	Core – VI	5	6	Core – IX	5	6	Core-XIII	5	5
Elective -I Discipline Specific Elective	3	6	Elective – III Discipline Specific Elective	3	5	Core – X	5	5	Project with viva voce	5	6
Elective-II Discipline Specific Elective	3	6	Elective -IV Generic Elective	3	5	Elective - V Generic Elective	3	5	Elective - VI DSE (Industry / Entrepreneurship) 20% Theory 80% Practical / Normal Subject	3	5
			Skill Enhancement Course I	2	2	Skill Enhancement Course II	2	2	Skill Enhancement course III / Professional Competency Skill	2	2
						Internship / Industrial Activity	2	-	Extension Activity	1	
	21	30		23	30		27	30		26	30
					Total	Credit Points -9	7				

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

Part	List of Courses	Credits	No. of Hours
	Core – I	5	6
	Core – II	5	6
	Core – III	5	6
	Elective – I Discipline Specific Elective	3	6
	Elective – II Discipline Specific Elective	3	6
		21	30

First Year – Semester – I

Semester-II

Part	List of Courses	Credits	No. of Hours
	Core – IV	5	6
	Core – V	5	6
	Core – VI	5	6
	Elective – III Discipline Specific Elective	3	5
	Elective – IV Generic Elective	3	5
	Skill Enhancement Course [SEC] – I	2	2
		23	30

Second Year – Semester – III

Part	List of Courses	Credits	No. of Hours
	Core – VII	5	6
	Core – VIII	5	6
	Core – IX	5	6
	Core (Industry Module) – X	5	5
	Elective – V Generic Elective	3	5
	Skill Enhancement Course – II	2	2
	Internship / Industrial Activity	2	-
		27	30

Semester-IV

Part	List of Courses	Credits	No. of Hours
	Core – XI	5	6
	Core – XII	5	6
	Core – XIII	5	5
	Core-XIV Project with VIVA VOCE	5	6
	Elective – VI (Industry Entrepreneurship)	3	5
	Skill Enhancement Course – III / Professional	2	2
	Competency Skill		
	Extension Activity	1	-
		26	30

Courses	Credit Distribution	
Core courses	13×5	65
Core Project	1×5	5
Elective courses	6×3	18
Skill Enhancement Course	3×2	6
Internship / Industrial Activity	1×2	2
Extension Activity	1×1	1
Total		97

QUEEN MARY'S COLLEGE (A), CHENNAI 4 PG AND RESEARCH DEPARTMENT OF PHYSICS MSC PHYSICS SYLLABI REVISION 2024-25 (COURSES OFFERED)

COURSE TYPE	SEMESTER	TITLE OF COURSE	HOURS	CREDITS
CORE I	Ι	CLASSICAL AND STATISTICAL MECHANICS	6	5
CORE II	Ι	MATHEMATICAL PHYSICS-I	6	5
CORE III	Ι	PRACTICALS I - GENERAL -I	6	5
CORE IV	II	QUANTUM MECHANICS –I	6	5
CORE V	II	MATHEMATICAL PHYSICS-II	6	5
CORE VI	II	PRACTICALS II- ADVANCED ELECTRONICS	6	5
CORE VII	III	QUANTUM MECHANICS-II	6	5
CORE VIII	III	ELECTROMAGNETIC THEORY	6	5
CORE IX	III	PRACTICALS III- GENERAL -II	6	5
CORE X	III	CONDENSED MATTER PHYSICS	6	5
CORE XI	IV	METHODS OF SPECTROSCOPY	6	5
CORE XII	IV	PHYSICS OF FUNCTIONAL MATERIALS	6	5
CORE XIII	IV	PRACTICALS IV- MICROPROCESSOR, MICROCONTROLLER AND C PROGRAMMING	6	3
CORE XIV	IV	PROJECT	6	5
DSE-I	I	INTEGRATED ELECTRONICS AND MICROPROCESSOR / SPACE SCIENCE	6	3
DSE-II	Ι	GENERAL NUCLEAR PHYSICS / INSTRUMENTATION TECHNIQUES	6	3
DSE-III	II	ADVANCED NUCLEAR PHYSICS / ADVANCED ELECTRONICS	5	3
DSE-IV	IV	INDUSTRIAL TRAINING / SELF LEARNING COURSE	5	3
GE-I	П	PHYSICS AND ARCHAEOLOGY / ASTROPHYSICS	5	3
GE-II	III	PHYSICS OF BIOLOGICAL SYSTEMS/ MEDICAL INSTRUMENTATION	5	3
SEC-I	II	COMPUTATIONAL PHYSICS I -NUMERICAL METHODS	2	2
SEC-II	III	COMPUTATIONAL PHYSICS II- C PROGRAMMING	2	2
SEC-II	IV	BASICS OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE	2	2

SYLLABUS

			FI	RST	YI	EAR - SEMESTER	l – I			
	CLAS	SSIC	CAL	AN	ND	STATISTICAL N	MECHANI	ICS		
Course	Category	L	Т	Р	S	Credits	Inst.		Mark	S
Code	Core/Ele/Sec	L	L	r	S		Hours	CIA	ESE	Total
24PPYC0	1 Core - I	5	-	-	1	5	6	25	75	100
	Learning Objectives									
LO1	To educate students							is in rigid	body dy	namics.
LO2	To learn about Lag									
LO3	To learn the fundar			once	epts	s of classical and c	quantum sta	itistics and	d their a	pplications
	to microscopic syste	ems.								No. of
UNIT						Contents				Hours
	Canonical Transfo	orma	ntior	IS						
	Canonical transform					0				
	be canonical- Poiss									• 0
Ι	under canonical tra									20
	between Lagrange Solution of Hamil									
	Kepler's Problem b				-			i problem	i anu	
	Dynamics of Rigid	-		ion	Jac					
	Generalized coordin			a ris	gid	body $-$ body and s	space coord	linates - E	uler's	
II	angles -component									20
	rotational kinetic e									
	under the action of	grav	ity -	- fas	st to	p - sleeping top.				
	Small Oscillations									
	Stable, unstable ar				-	-				15
тт	oscillations - Proper vibration- motion c						nates and no	ormal moc	les of	15
III	vibration-motion c	nai	mea	r tri	alo	mic molecule.				
	Classical Statistics									
	Phase space - Liou					-		• •	-	
IV	ensembles - Perfect					0			1.	• 0
	Gibb's Paradox - 1							•		20
	parameters - Micro only)- Maxwell's									
	Maxwell's law.	11511	IUUI	OII	01	molecular velociti	es – exper		51 101	
	Quantum Statistic	s								
	Bose Einstein stati		(qı	ıalit	ativ	ve only) – black	body radia	tion - Pla	anck's	
V	radiation law - i		· •			• ·	•			15
	application to liquid						-	only) – ele	ectron	
	gas in metals – free	elec	tron	mc	odel		nission.			
			C		~	Total				90
		a -				utcomes				K Level
	On completion of this Recall the basic idea						dorstand	at of corr	nicol	V1 V1 V2
	oordinates for all dyr									K1, K2,K3 K5
	oorumates for all dyl	1a1111	Cal S	узи		s with the same flu	moet of ueg	51005 01		NJ

	freedom. Use the transformations to solve the given physical problems in new							
	coordinates easily. (PO3)							
	Recollect the idea of rigid body to identify, formulate and to solve the problems	K1, K2,K4						
CO2	in rigid body dynamics especially the various stages of motion of heavy	7 7						
	symmetrical top classically. (PO3)							
GOA	Summarize the knowledge of equilibrium and formulate the Lagrangian equation	K1,						
CO3	to solve the small oscillation problem i.e. the motion near the equilibrium.	K2,K3,						
	(Discussions)[PO2, PO3, PO5]	K5						
	Understand the concept of Phase space, micro and macro states, state and prove	K1,K2,K3						
	Liouville's theorem, Compare the different types of ensembles, utilize them to							
	arrive thermo dynamical functions of perfect gas, recalling the thermodynamic							
	parameters derive their correlation with partition function, explain entropy and							
CO4	Gibb's paradox, explain Maxwell-Boltzmann distribution law, Apply it to							
	distribution of molecular velocities. (Online quizzes on basic concepts of							
	classical statistics and need for quantum statistics) (PO7)							
	https://www.youtube.com/watch?v=wZUMgLBReEY (NPTEL-NOC IITM)							
	[PO2] Understand the concept of quantum statistics explain Bose Einstein statistics,	K1,K2,K3						
	apply it to blackbody radiation to derive Planck's radiation law, Discuss ideal BE	K1,K2,K5 K4,K6						
	gas and BE condensation and its application to liquid helium, explain Fermi Dirac							
	statistics ,electron gas in metals, appreciate its use in free electron model &							
~~~	electronic emission. https://www.youtube.com/watch?v=O_zjGYvP4Ps Group							
CO5	discussions, individual Seminar through ppts and assignments can be given on							
	following topics to enhance their further learning, i. distinction between							
	classical and quantum statistics, <b>ii. comparison between</b> Bose Einstein and Fermi							
	Dirac statistics, the different particles, their different applications.							
	(PO2,PO5,PO4,PO6,PO7)							
	Text Books							
1	Classical Mechanics – Gupta, Kumar and Sharma – K. Nath and Co. Meerut II Edi	tion. [Unit –						
	I, II and III]							
2	Classical Mechanics – J. C. Upadhyaya - 2nd edition (2009) - Himalayan Public	ation House.						
	[Unit – I, II and III] Statistical Machanica – Cupto Kumar and Sharma – K. Nath and Co. Macrut, II F	dition [1]n:+						
3	Statistical Mechanics - Gupta, Kumar and Sharma – K. Nath and Co. Meerut II E – IV, V]	union. [Unit						
	Statistical Mechanics – Satya Prakash and T.P. Agarwal – Kedarnath Ramnath	and Co. VI						
	Edition. [Unit – IV, V]							
	Reference Books							
1	Classical Mechanics – H. Goldstein - Narosa Publication.							
2	Statistical Mechanics – Kerson Huang – Wiley Eastern - New Delhi, 199.							
3	Classical Mechanics for particles and rigid bodies – Keran C. Gupta - Wiley Ea	stern, 1988.						
4	Classical Mechanics -N.C. Rana and P.S. Joag (Tata McGraw-Hill, New Delhi, 19							
	Web Resources							
1	http://www.phy.auckland.nz/staff/smt/453310SC.html							
2	https://www.youtube.com/watch?v=yGyoTMeQWbQ							
3	https://www.youtube.com/watch?v=Ocm4HpPOlgs							
4	www.powershow.com//Rigid_Body_Dynamics_I_An_Introduction.							
3	https://www.youtube.com/watch?v=Ocm4HpPOlgs							

	MAPPING WITH PROGRAM OUTCOMES									
Strong	Strongly Correlated - 3         Moderately Correlated - 2         Weakly Correlated - 1							lated – 1		
						РО				
	1	2	3	4	5	6	7	8	9	10
	Disciplin	Skilled	Critical	Sense	Team	Skille	Digital	Ethical	National	Lifelong
CO / PO	ary	Comm	thinker	of	player	d	ly	awarene	and	learners
	Knowled	unicato	and	inquir	/work	projec	Efficie	ss/	internatio	
	ge and	r	problem	У	er	t	nt	reasonin	nal	
	skills		solver			mana		g	perspectiv	
						ger			e	
CO1	3	1	2	-	-	-	1	1	-	-
CO2	3	1	2	-	-	-	1	1	-	-
CO3	3	2	2	-	1	-	1	1	1	1
CO4	3	2	1	2	-	-	2	1	1	1
CO5	3	2	1	2	2	1	2	2	-	1
AVG	3	2	2	1	1		1	1	-	1
TOTAL	15	8	8	4	3	1	7	6	2	3

			F	TIRS	T YI	EAR - SEMES	STER – I			
			N	<b>IAT</b>	'HE]	MATICAL F	PHYSICS - I			
	Se Category Credits Inst. Hours Mark									
Course Code	Core/Ele /Sec	L	Т	Р	S			CIA	ESE	Total
24PPYC	02 Core - II	4	1	-	1	5	6	25	75	100
101			1			ning Object		1. 51		1.
LO1							thematics that are uvector algebra, lin			
LO2							tensors, their prop			
_	physics.									
LO3							ncepts learnt as a t	ool for un	derstand	ling and
	analyzing differe	ent pro	blen	ns in	phy	SICS				No. of
UNIT						Contents				Hours
I	their physical si spherical polar co divergence theor from Gauss dive Laplace equation theorem -Green's <b>Linear Vector s</b> Definition of a L	ident ignific oordin rem – rgence ns - S s theor <b>pace a</b> inear	ance ates. physe the tokes rem i and Vect	- e -Lin sical oren s' th in a Gree or sp	expre e, su sigr n, G eore plan e <b>n's</b> bace	ession for gr rface and vol- hificance and auss' law in em -physical e. <b>function</b> - Linear inde	gradient, divergence adient, divergence ume integrals (basi proof –deduction differential form, significance and p pendence - basis a ormal sets - Gr	e and cun ic ideas)-( of Gauss . Poisson' proof- Gu nd dimen	rl in Gauss 3' law 3's and ceen's sion -	20
ш	dimensional case <b>Matrices</b> Elementary idea Symmetric and Unitary- singular equivalent matric Characteristic eq Hamilton theorer theorem only – si	- pro e -Eige us – S anti-s r and n ces. juatior m - Station	pecia ymrr ionsi n of atem	es-C nctional type netricongul a ma ent a nd U	ypes ar-i atrix and p	xpansion of C of matrices: orthogonal – inverse, conju – Eigen valu proof – Invers ry transforma	Dirac-delta – Green's funct Green's function. Square and diag Hermitian – ske agate of a matrix - o ues and Eigen vec e of a matrix by Ca tion - Diagonalisat	gonal mat ew Herm elementar etors – Ca tyley-Han	one trix – itian– y and ayley- nilton	15 20
IV	Dummy and real covariant vector	oordin l indic s – D btracti nt law	ate t es – Defini on – - syr	rans Kron ition - Eq nme	form neck of ualit	nation – Indic er delta and i tensors – Ra ty – Inner an and antisymm	ial and summation its properties – Co ank – tensors of id outer product -	ntravariar higher ra	nt and .nks -	15

V	Basic definitions of Abelian group and cyclic group– subgroups -Lagrange's theorem for finite group-Homomorphism and Isomorphism between groups - Representation of a group -Unitary representations - Reducible and Irreducible representations - Schur's Lemmas – Great Orthogonality theorem - Character table – properties - Character table of C2v, C3v and D3h – salient features of SU(2) - O(3)groups.	
	Total	90
	Course Outcomes	K Level
CO	On completion of this course, students will	
C01	What is Vector Algebra and How is it applied in physics. Explain in detail different concepts and identities in vector algebra. Modelling Gauss divergence, Stokes and Green's theorem. Interpret Gauss divergence theorem to derive important laws of Physics such as Gauss law in electrostatics. https://nptel.ac.in/courses/115/105/115105097/	K1,K2, K3,K5
CO2	What are Linear Vector spaces and Outline its properties, Examine Gram Schmidt's Orthogonalization to check linear independence of vectors. Explain the method of Green's function to show how it is used to solve difficult problems in quantum mechanics, pertubatively using Green's function. www.youtube.com%2Fwatch%3Fv%3DF3ATYBGC_tY	K1,K2 K3,K4 K6
CO3	<b>Recall</b> Elementary ideas of matrices and <b>classify</b> them. <b>Develop</b> the concept of Eigen values and Eigen vectors and <b>deduce</b> Cayley- Hamilton theorem. <b>Analyze</b> the basic ideas of Rotation matrices and <b>apply</b> to Pauli spin and Dirac matrices.(GD) <u>https://nptel.ac.in/courses/115/105/115105097/</u> Interactive seminar on application of Pauli spin and Dirac matrices in quantum mechanical phenomena and properties of Pauli spin and Dirac matrices. <b>[K6 PO2,PO3,PO4]</b>	K1,K2 K3,K4 K5
CO4	Outline: what are tensors and why do we need them. Define tensors. Discuss indicial and summation conventions. Discuss Kronecker delta and its properties. Classify tensors as scalar, covariant, contravariant and mixed tensors. Discuss algebraic operations of tensors. Explain rank of a tensor. Assignment: Explain algebraic operations of tensors (Addition, subtraction, equality, outer and inner product, contraction of tensors), using simple problems as illustrations.	K1,K2 K3,K4 K6
CO5	<b>Relate</b> the concept of group, subgroup and their types. <b>Compare and contrast</b> Homomorphic and Isomorphic groups. <b>Formulate</b> representation of groups and their respective theorems. <b>Construct</b> Character table of C _{2v} , C _{3v} and D _{3h} groups. <b>Apply</b> SU(2) - O(3) group symmetry to elementary particles. <u>https://onlinecourses.nptel.ac.in/noc20_ph03/unit?unit=58&amp;lesson=68</u> <b>PPT and</b> <b>assignment</b> on different molecular symmetry groups [ <u>https://symotter.org/tutorial/intro</u> ], [ <u>https://symotter.org/gallery</u> ] and construct character table for the same.[K6 <b>PO2,PO3,PO4,PO5</b>	K1,K2 K3,K5
	Text Books	
	Books for Problems:	
	Worked out problems in Mathematical Physics by Sathya Prakash are encour	
1	Sathya Prakash – Mathematical Physics – 14th Edition – 1999 - Sultan Chand an Units).	nd Co. (All

2	B. D. Gupta – Mathematical Physics - 3rd Edition – 2004 – Vikas Publishing House Pvt Ltd., - (All Units).
3	B. S. Rajput – Mathematical Physics – 14th Edition – 1999 – Pragathi Prakashan (All Units).
	Reference Books
1	A. W. Joshi - Matrices and Tensors in Physics – 3rd Edition – Wiley Eastern Ltd., (Unit III and IV).
2	F. A. Cotton – Chemical Applications of group Theory - 3rd Edition – 1990 – John Wiley and Sons (Unit V).
3	E. Kreyszig – Advanced Engineering Mathematics - 8th Edition – 1999 - Wiley, NY.
	Web Resources
1	http://www.mpipks-dresden.mpg.de/~jochen/methods/outline/html
2	http://phy.syr.edu/~trodden/courses/mathmethods/
3	http://dmoz.org/Science/Physics/Mathematical_Physics/
4	http://www.thphys.nuim.ie/Notes/engineering/frame-notes.html
5	www.thphys.nuim.ie/ Notes/frame-notes.html

	MAPPING WITH PROGRAM OUTCOMES													
í.	Strongly Correlat	ed - 3	Modera	tely Correl	ated - 2		Weakly Co	orrelated – 1	l					
		РО												
	1	2	3	4	5	6	7	8	9	10				
CO/PO	Disciplinar	Skilled	Critical	Sense	Team	Skilled	Digitall	Ethical	Nation	Lifelong				
	У	Communi	thinker	of	player/w	project	у	aware	al and	learners				
	Knowledge	cator	and	inquir	orker	manager	Efficient	ness/	interna					
	and skills		problem	У				reason	tional					
			solver					ing	perspe					
									ctive					
CO1	3	1	1	L	-	-	2	1	1	1				
CO2	3	1	2	L	-	-	1	1	1	1				
CO3	3	1	2	L	2	1	2	2	1	1				
CO4	3	1	2	l	-	-	1	1	-	1				
CO5	3	1	2	2	1	-	2	2	1	1				
AVG	3	1	2	l	1		2	1	1	1				
TOTAL	15	5	9	5	3	1	8	7	4	5				

			FI	RST	YI	EAR - SEMES	TER – I				
			PR	ACT	Ί	CALS I- GEN	ERAL-I				
Course Code	Category Core/Ele/Sec	L	Т	Р	S	Credits	Inst. Hours	CIA	Ma ESE	urks Total	
24PPYC0		-	6	-	-	5	6	25	75	100	
				Le	ar	ning Objecti					
L01	To impart practical concepts underlying		ls th	rougl	h h	ands on exper	rience with	instrumer	nts and ı	inderstand basic	
LO2	To strengthen analy		l, in	terpre	eta	tion and report	rt making sl	cills			
LO3	To enhance the con			_		-	0				
UNIT		Contents									
I	CO1 1. Young's Mod 2. Young's Mod 3. Coefficient of	lulus	s by	Нуре	erł	olic Fringes	s oscillating	g disc met	thod	12	
II	<ol> <li>Energy loss</li> <li>Specific heat</li> </ol>	e co calc it ca	effic culat paci	ient ions ty of	of — lic	resistance – T				20	
III	CO3 9. Hartmann's constant 10. Hartmann's lines	inte inte	erpol	ation ation	ı fo	ormula –Hydro ormula- Solar		•	-	12	
IV	11. F.P. Etalon – Distance between plates.         CO4         11. Maxwell's Bridge – Self inductance         12. Determination of self inductance - Anderson's bridge         13. Determination of Planck's constant – Photoelectric cell.         14. Impedance measurement of a polymer film using electrochemical work station.(Demonstration)         15. Zeeman Effect - study.							iical	20		
V	CO5 16. Determinati 17. LASER- stu 18. Determinati attenuation 20. Dielectric cor		16								
				5. 5011		Total				90	

	Course Outcomes	K Level
СО	On completion of this course, students will	
CO1	<b>Recall</b> the basic concepts of moduli of elasticity and interference by forming circular and elliptic fringes to <b>find</b> the modulus of Perspex plates, Utilizing the <b>principles</b> of black body radiation, <b>apply</b> laws of viscosity to <b>determine</b> viscosity of a liquid and <b>evaluate</b> Stefan's constant. <u>https://www.youtube.com/watch?v=onGuJZS8</u> . <b>Manual calculations can be verified using excel sheets</b> .( <b>PO7</b> )	K1,K2,K3,K5
CO2	<b>Determine</b> specific heat capacity of liquids . <b>Demonstrate</b> the effect of temperature on resistance by determining the temperature coefficient of resistance of a thermistor and <b>find</b> resistivity of a sample by Four probe method. <b>Examine</b> the energy loss of magnetic materials by drawing B -H curve <u>https://www.youtube.com/watch?v=I9RmGM1kbs8</u> ( <b>PO6,PO7)</b> .	K1,K2,K3,K4
CO3	<b>Recall</b> Hartmann's interpolation formula, <b>apply</b> it to <b>evaluate</b> Rydberg's constant using Hydrogen spectrum and <b>Determine</b> the wavelengths of Fraunhofer lines in solar spectrum. <b>Appreciate</b> the concept of photoelectric emission in determination of Planck's constant using Photoelectric cell. <b>Determine</b> the distance between plates in F.P. Etalon utilising the principles of interference.	K1,K2,K3,K5
CO4	<b>Understand</b> the principles of self induction, <b>apply</b> it to <b>determine</b> the selfinductance of the given coils by Maxwell's Bridge and Anderson's bridge .compare the two bridges and <b>analyse</b> the efficacy of the methods. (Graphs can be plotted using ORIGIN software) ( <b>PO7</b> ).Design a circuit containing an inductance coil which can be used for everyday applications.(K6) Demonstrate Impedance measurement of a polymer film Study Zeeman Effect and understand its basic principle.	K1,K2,K3,K4,K6
CO5	<b>Study</b> laser beam parameters and particle size of the given Laser beam and <b>interpret</b> their importance. <b>Determine</b> numerical aperture, acceptance angle and attenuation coefficient of an Optical fiber <u>https://www.youtube.com/watch?v=b7dLcINlvwE</u> optical fiber and <b>appreciate</b> its application in the optoelectronic industry ( <b>PO3</b> ). <b>Determine</b> Energy band gap of semiconductors and understand it's role in conductivity. <b>Evaluate</b> Dielectric constant of a solid .Virtual lab is recommended to understand the basic concepts in every discipline of physics. <u>http://vlab.amrita.edu/?sub=1&amp;brch=189∼=343&amp;cnt=6</u> ( <b>PO7</b> ).	K1,K2,K4

	MAPPING WITH PROGRAM OUTCOMES													
Stro	ongly Correlated	- 3	Moder	ately Corr	related - 2		,	Weakly Correlated – 1						
	PO													
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commun icator	3 Critical thinker and problem solver	4 Sense of inquir y	5 Team player/ worker	6 Skilled project manage r	7 Digital ly Efficie nt	8 Ethical awarene ss/ reasoni ng	9 National and internat ional perspect ive	10 Lifelon g learner s				
C01	3	2	2	1	2	1	3	2	1	2				
CO2	3	2	1	2	2	1	3	1	1	2				
CO3	3	2	2	2	2	1	1	1		1				
CO4	3	1	1	1	2	1	1	1		1				
CO5	3	1	2	2	2	1	2	1	2	2				
AVG	3	2	2	2	2	1	2	1	1	2				
TOTAL	15	8	8	8	10	5	10	6	4	8				

			FIR	ST	YEA	R - SEMESTE	$\mathbf{E}\mathbf{R} - \mathbf{I}$			
	INTEGRAT	ED	EL	ECI	RO	NICS AND N	<b>AICROPRO</b>	DCESSOR	R	
Course	Category	_		_	~	Credits	Inst.		Marks	
Code	Core/Ele/Sec	L	T	Р	S		Hours	CIA	ESE	Total
<b>24PPYE1</b> A	A DSE - I	5	-	-	1	3	6	25	75	100
LO1	To import a diversifie	d len	owl			ng Objective		their oppl	iantiona	
LUI	To impart a diversifie			-		-	-			
LO2	To make the students of									echnolog
LO3	which is a growing field Strong grasp of funda									
100	Strong grupp of fundu		tuis		com					
UNIT					(	Contents				No. of Hours
	<b>Operational Amplif</b>	fier								110015
	Instrumentatio		npli	fier -	V	oltage to curre	ent converte	er- current	to voltage	
	converter – active fil			-			-			6
Ι	Butterworth filter cin amp as comparator-				<u> </u>			itial equati	ons. Op -	0
	amp as comparator-	lege	nera	uve	con		niti tilgger).			
	<b>Op-Amp Application</b>	ons (	Osc	illat	ors	and Converto	ors)			
	Wien bridge, j	phas	e sh	ift o	scill	ators – triangı	ular, saw-too			
II	generators –Schmitt'									6
	weighted resister DA counter type ADC –			-						-
	counter type ADC =	succ	0331	ve a	ppre				С.	
	Microprocessor 808	35								
	Introduction to				-					
III	of 8085 – Machine la									6
111	Arithmetic, Logic, instructions – 8085 a									
				8		8	6	,	,	
	Programming With									
IV	Addition, Sub Square root (8 bit),				-			· ·	-	6
1 V	order- reversing the									0
	Binary to BCD (8 bit							202 10 2		
	Memory, Interfacing								·	
$\mathbf{V}$	RAM - ROM							-	-	
v	8 and 4K X 8). I/O C Interrupt – propertie	-				-		-		6
	Interrupts–Peripheral									-
	Programming the I/C	) por	ts –	Prog	gran	nming the time	er.			
										90
						Total				70

	Course Outcomes	K Level								
CO	On completion of this course, students will									
CO1	<b>Recall</b> the basic ideas of operational amplifier, <b>Applications</b> of operational amplifiers. Formulate the conditions for various categories of filters depending on frequencies. <b>Solving</b> simultaneous and differential equations. <b>Demonstrate</b> Op - amp as regenerative comparator. https://www.youtube.com/watch?v=9cxzu2-85II ( <b>PO2</b> )	K1 K2 K3								
CO2	What is the condition of oscillation? Construction of sinusoidal and non-sinusoidal oscillatorsAnalyze their waveforms. Explanation of A/D and D/A converters. Compare different types andjustify their merits and demerits. (Seminar-PPT-Questions) Practice sheets:http://tuttle.merc.iastate.edu/ee201/quiz_practice.html((PO2, PO5, PO7, PO3, PO4, PO6PO9)									
CO3	Explain pin functions of 8085and Architecture of 8085. Compare Machine language and Assembly language. Why addressing modes are needed? Summarize Instructions set and addressing modes of 8085. Create timing diagram for READ and WRITE memories. https://www.youtube.com/watch?v=zAXAb_ttazY. (PO7)	K1 K2 K5 K6								
CO4	Binary and Binary to BCD code conversion. Define debugging.									
CO5	List the types of memories. Explain the concept of interfacing and. I/O Operations, Demonstrate Interrupt circuits and DMA. Function of Support chip and applications as Programming the I/O ports and the timer. (Group Seminar-PPT-Questions) (PO2, PO5, PO7)									
	Text Books									
1	OP-AMPs and Linear Integrated circuits - Ramakant A Gayakwad – (Unit I and II)									
2	Introduction to Integrated Electronics - V.Vijayendran - Viswanathan Pub(Unit I &II									
3	Microprocessor architecture - Gaonkar - 3 rd edition - Willey eastern ltd ( Unit III, IV, V	)								
	Reference Books									
1	Analog and Digital circuits and systems – Jacob Milman and Christos c Halkias Tat Hill Company	a McGraw								
2	Microprocessors and applications – A. Nagoor Kani RBA Pubblications 1999									
3	Fundamentals of microprocessor and microcomputers B Ram -Dhanapat Rai									
	Web Resources									
1.	https://www.coursera.org/learn/electronics/lecture//2-5-active-filt									
2.	https://www.allaboutcircuits.com/lectures/op-amp-band-pass-ban									
3.	8085 PROGRAMMING COUNTING and LOOPING - https://www.youtube.com/watch?v=1d9sSoYYjcA	YouTube								
4.	https://www.youtube.com/watch?v=U3BGOaiyjz8									
5.	PPT – Digital to Analog Converters DAC PowerPoint presentation www.powershow.com//Digital_to_Analog_Converters_DAC_po									

	MAPPING WITH PROGRAM OUTCOMES												
Strongly Cor	related - 3		Moderately	v Correlate	ed - 2	Weakly Correlated – 1							
		РО											
CO / PO	1 Disciplinar y Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	of player/		6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa l and internat ional perspec tive	10 Lifelon g learner			
CO1	3	1	1	1	-	-	1	1	1	1			
CO2	3	1	2	3	2	1	3	1	1	1			
CO3	3	1	1	1	-	-	1	1	1	1			
CO4	3	1	1	1	-	-	1	1	-	1			
CO5	3	2	2	2	1	-	2	1	-	1			
AVG	3	1	1	2	1	-	2	1	-	1			
TOTAL	15	6	7	8	3	1	8	5	3	5			

	FI	RST	TY.	EAR	- SI	EMESTER –	Ι						
			SP	ACE	SC	IENCE							
Course Code	Category Core/Ele/Sec	L	Т	P	s		Inst. Hours	CIA	Marks ESE	Total			
		5		_	1	Credits 3		25	75	100			
24PPYE1B	PYE1B         DSE - I         5         -         1         3         6         25         75           Learning Objectives												
L01	To educate the students ab				/	v	odern Astro	nomy an	d Astroph	vsics			
L01 L02	To enrich the student's the					-			-				
L02	To acquire knowledge of s					0							
UNIT	1					tents				No. of Hours			
I	Galaxies and Solar System Galaxies - Types of Galaxies – Milky Way galaxy: General structure - Solar system: Internal structure of Sun and its atmospheric layers– Planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune) - Asteroids and its types– Meteoroids and its types–Meteor – Meteorites - Comets.								, Venus,	20			
П	Stellar Evolution Life cycle of a star: Birth of of a star - White dwarfs - C of state for stellar interior ( of Stellar Atmosphere.	of a Chan	sta dra	r - Ev isekh	/olu ar li	tion of stars	- Post main ants -Neutro	on stars - I	Equation	15			
III	Spectral Classification of Stellar spectra - Harvard Diagram – Stellar magnitu measurement - Variable Supernovae - Black Hole -	syste de - star	em Lu s -	imino Cor	osity npo	y effect on sto site stars: B	ellar spectra	a – Stellar	distance	20			
IV	Astronomical Instrumen Optical telescope - Cele telescope: light gathering Astronomical standard spo	ts stial pow ectro	l an ver	nd Te - aph -	erres a Ch	strial telescop ngular magn naracteristics	ification - of spectrog	resolving graphs: R	power - esolving	15			
V	Power-Dispersion-Speed-Throughput - Radio telescope – Hubble space telescope.Satellite CommunicationKepler's laws – Orbits and inclination power systems – Altitude control –Geostationary orbits – Advantages and disadvantages - Satellite links – Parameters:Angle of elevation-Propagation delay-Orbital spacing – Satellite communicationfrequency bands, GIS and GPS (elementary ideas) – Indian satellites andapplications.							20					
					To	tal				90			
				Outo						K Level			
CO	On completion of this cour												
CO1	<b>Recall</b> the shape and basic system in it. <b>Understand</b> asteroids, meteoroid and	l, ho	ow	the	inte	rplanetary sp	pace is fille	ed the de	bris like	K1 K2 K6			

	perihelion passage.(PPT presentation on galaxy, interplanetary debris) [PO2], [PO7], [PO9].	
CO2	<b>Be familiar</b> with the birth of a star and the process of stellar evolution by which a star changes over time. <b>Understand</b> the formation of neutron stars on the outburst of supernovae. <b>Define</b> the Chandrasekhar limit and <b>assess</b> how stars that have more mass will be converted into a black hole as the pressure due to the electron degeneration will keep them from collapsing until the density is extremely high <b>Apply and analyze the</b> knowledge of the fusion of hydrogen nuclei by thermonuclear fusion reaction with the release of binding energy is the primary source of energy generation in stars. ( <b>PPT presentation on the birth and death of stars</b> ) interplanetary debris) [ <b>PO2</b> ], [ <b>PO7</b> ], [ <b>PO9</b> ].	K1 K2 K3 K4
CO3	Illustrate the Harvard system of spectral classification of stars. Relate surface temperature, luminosity, and absolute magnitude of stars in H-R diagram. Apply the knowledge of the theory of general relativity, which predicts that a sufficiently compact mass can deform space-time to form a black hole. (Group discussion - PPT presentation on H-R diagram)) [PO2], [PO3], [PO7], [PO9].	K1 K2 K3
CO4	Distinguish between celestial and terrestrial telescopes. List the basic properties of the telescope and analyze the characteristics of the spectrograph. Make use of spectrograph to measure the spectrum of electromagnetic radiation, including visible light and radio, which radiates from stars and other celestial objects.(Seminar Presentation on the telescopes and spectrographs through any technical tool [PO2], [PO7],[PO9]. https://www.cfa.harvard.edu/~dfinkbei/ay192/lectures/ay192-telescopes- spectrographs.pdf	K1 K2 K3 K4
CO5	Recollect Kepler's laws used to predict the orbits of many objects such as asteroidsand comets and were pivotal in the discovery of dark matter in the Milky Way.Understand and apply the satellite-based navigation system GPS, which enablesanyone with a handheld receiver to determine his location to within a few meters.Combine the use of GIS in the telecom sector and the INSAT system, providesservices to telecommunications, television broadcasting, satellite newsgathering,societal applications, weather forecasting, disaster warning and Search and Rescueoperations.(Seminar Presentation on satellite communication through anytechnical tool) [PO2], [PO3], [PO7], [PO9].	K1 K2 K3 K6
1	Text Books	
1	Astrophysics -K. D. Abhyankar, Tata McGraw Hill Co. [All units]Introduction to Astrophysics - Baidyanath Basu, Prentice Hall of India Pvt. Ltd. [Unit	_ II
2	Unit – III and Unit - IV]	11,
3	Communication Electronics – N D Deshpande, D A Deshpande and P K Rangole, McGraw Hill Co.[ Unit - IV,(1989) [Unit – V]	Tata
	Reference Books	
1	Stellar structure -S.Chandrasekar, Donar - New York.	

3	Astrophysics A modern PerspectiveK. S. Krishnaswami, New Age International.
	Web Resources
1	https://ocw.mit.edu/courses/physics/8-901-astrophysics-i-spring-2006
2	https://www.slideshare.net/gbbantayearth/stars-stellar-evolution
3	https://www.slideshare.net/junelynhigara/astronomical-instruments
4	https://www.slideshare.net/niranjan123456789/satellite-communications-ppt
5	courses.missouristate.edu/huiliu/csc690/slides/satellite.ppt

	MAPPING WITH PROGRAM OUTCOMES											
Strongly Co	orrelated - 3		Moderate	nted - 2	۷	Veakly Co	rrelated – 1					
	PO											
CO / PO	Knowledge nicator prol and skills sol				5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 National and internation al perspectiv e	10 Lifelong learners		
C01	3	2	-	1	-	-	2	1	1	1		
CO2	3	2	-	1	-	-	2	1	1	1		
CO3	3	2	2	1	1	-	2	1	1	1		
CO4	3	2	-	1	1	-	2	1	1	1		
CO5	3	2	2	1	1	-	2	1	2	1		
AVG	3	2	1	1	1	-	2	1	1	1		
TOTAL	15	10	4	5	3	-	10	5	6	5		

FIRST YEAR - SEMESTER – I										
GENERAL NUCLEAR PHYSICS										
							Inst.	Marks		
Course Code	Category Core/Ele/Sec	L	Т	Р	S	Credits	Hours	CIA	ESE	Total
24PPYE2A	DSE - II	5	-	-	1	3	6	25	75	100
Learning Objectives										
LO1	To introduce students to the fundamental principles and concepts governing nuclear and particle physics.									
LO2	To understand nuclear models and predict the type of decay that a nucleus will undergo base on its composition relative to the band of stability.								ergo based	
LO3	To comprehend the concept of elementary particles.									
UNIT	Contents						No. of Hours			
Ι	Nuclear Structure and Nuclear Forces Nuclear radius - Electron scattering method – Mirror nuclei method -Nuclear magnetic dipole moment –Rabi's magnetic resonance method - Electric Quadrupole moment – Symmetry and statistics of Nuclei - Nuclear forces – Characteristics of nuclear forces - Central forces - Ground state of the Deuteron - Magnetic moment of deuteron - Quadrupole moment of deuteron -Exchange forces – Iso-spin formalism - Tensor forces - S and D state admixtures.							20		
Π	Nuclear Models Liquid Drop model – Semi-Empirical Mass formula and its applications –Magic numbers – Evidence for the existence of magic numbers - Nuclear Shell model - Nuclear spin-orbit coupling – Predictions of Nuclear shell model: Angular momenta and parities of nuclear ground states – Magnetic moments: Schmidt lines – Quadrupole moments.									15
Ш	Nuclear Reactions and Nuclear EnergyTypes of nuclear reactions – Conservation laws in nuclear reactions – Energeticsof nuclear reactions: Q-value – Nuclear reaction cross section - Nuclear fission–Bohr-Wheeler theory of nuclear fission – Nuclear chain reaction – Four-factorformula – Thermal neutrons – Neutron cycle in a thermonuclear reactor – Criticalsize - Classification of nuclear reactors – Nuclear fusion – Sources of stellar energy.								20	
IV	Nuclear DecayGamow's Theory of Alpha decay - Fermi's theory of Beta decay - Curie plots -Selection rules in beta decay: Fermi & Gamow-Teller Selection rules - Electroncapture - Parity violation in Beta decay Gamma decay Angular momentumand parity selection rules - Internal Conversion - Nuclear Isomerism.								20	

V	<b>Elementary Particle Physics</b> Classification of elementary particles-fundamental interactions among particles - Quantum numbers specifying states of particles (Nucleon, lepton, spin, Isospin, strangeness and hypercharge) – Symmetry and conservation laws – Special symmetry groups SU (2) and SU (3) – Quarks and its types - Gell-Mann-Nishijima formula of hadrons- Gell-Mann - Okubo mass formula for octet and decuplet hadrons.	15				
	Total	90				
	Course Outcomes	K Level				
СО	On completion of this course, students will					
CO1	<b>Recall</b> various properties of the nuclei and the strong nuclear forces holding the nucleus together.Get insight into nuclear size by electron scattering and mirror nuclei methods. <b>Make use of the</b> bound state of the Deuteron quantum mechanically <b>assuming</b> central forces, <b>extend</b> the idea to learn about magnetic dipole moment and electric quadrupole moment.Gain knowledge about exchange forces, Isotopic spin formalism, tensor forces and S and D state admixtures[ <b>PO</b> 7].	K1 K2 K3 K4				
CO2	<b>Recollect</b> and <b>comprehend</b> nuclear models and <b>analyze</b> the analogy that correlates a large amount of information and enables predictions of the properties of nuclei. Able to list out magic numbers and analyze the magicality of a number in terms of the incremental binding energies of the nuclei. [PO1], [PO2], [PO3].	K1 K2 K4				
CO3	<b>List</b> the types of nuclear reactions and conservation laws related to it. <b>Elicit</b> the release of energy in a nuclear reaction and able to calculate Q-value. <b>Distinguish</b> between fission and fusion reactions. Able to <b>correlate</b> how nuclear fission and fusion reactions are responsible for controlled chain reaction and sources of energy production in stars respectively. [PO2], [PO3], [PO4], [PO9].	K1 K2 K3 K4 K5				
CO4	<b>Remember</b> the occurrence of nuclear decay when the unstable nucleus spontaneously emits energy in the form of radiation. <b>Analyze</b> the violation of parity in a $\beta$ -decay. Able to <b>comprehend</b> how the high energy radiation emitted from gamma decay is extremely penetrating and thereby dangerous to biological life forms. [PO1], [PO2], [PO3].	K1 K2 K4				
CO5	Able to <b>classify</b> elementary particles and <b>compare</b> the fundamental interactions with examples. <b>List</b> out the quantum numbers of elementary particles. <b>Outline</b> the Quark model and symmetries SU(2), SU(3). Octet and Gellman-Okubo formula. <b>Group discussion</b> : Methods to develop Octet and Decuplet symmetry [ <b>PO</b> 2].e- learning: [ <b>PO</b> 9]	K1 K2 K4				
	Text Books					
1	Nuclear Physics – D.C. Tayal, Himalaya Publishing House, 5th edition 2021 (Units					
2	Nuclear Physics and Particle Physics –Sathyaprakash, Sultan Chand & Sons, 5 th edi (Units I - V).	tion 2005				
3	Nuclear Physics – Dr. S.N. Ghoshal, S.Chand, Revised edition 2020 (Units I – V)					
	Reference Books					
1	Nuclear Physics-R.R.Roy and B.P. Nigam Wiley Eastern Limited Co					
2	Elementary Particles – Michael longo- McGraw Hill Koga Kuswa Limited. Co					
3	Nuclear Physics-V. Devanathan, Narosa Publishers, 2006 Co					
	Web Resources					
1	www.fen.bilkent.edu.tr/~bulutay/453/intro-nuclear-particle-physics.pdf					
2	nptel.ac.in/courses/115104043					
-						

3	https://ocw.mit.edu//nuclearnuclear-physics/lecture-notes/MIT22_02S12_lec_ch.
4	https://sites.google.com/a/northgeorgia.edu/ngcsu-physics-note-sharing/home/nuclear
5	https://courses.mak.ac.ug/sites/default/files/downloads/phy7211.pdf

		MA	PPING WITH	I PROGRA	AM OUTC	COMES				
Strongly Cor	related - 3		Moderately	Correlate	W	eakly Corr	related – 1	l		
	РО									
CO / PO	y Commu th		3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa I and internat ional perspec tive	10 Lifelon g learner
CO1	3	1	2	1	-	-	1	1	-	-
CO2	3	1	2	2			1	1	-	-
CO3	3	2	2	1	1	-	2	1	-	1
CO4	3	1	2	2	-	-	1	1	-	1
CO5	3	2	2	2	1	-	2	1	1	1
AVG	3	1	2	2	1	-	1	1	-	1
TOTAL	15	7	10	8	3	-	7	5	1	3

				FIRS	ST YI	EAR	- SEMESTER	– I			
			INST	RUN	<b>AEN</b>	ТАТ	TION TECHN	NIQUES			
Cour Cod		Category Core/Ele/Sec	L	Т	Р	s	Credits	Inst. Hours	CIA	Mark ESE	
24PPY	E2B	DSE - II	5	-	-	1	3	6	25	75	100
	Learning Objectives										200
L01		evelop the knowle action.	dge o					ctural charac	terization	througl	n the X-ra
LO2		tudy how the trans tity measurements.	ducer	s are	use	d for	energy conve	ersion and th	heir uses i	n vario	ous physica
LO3	To u	nderstand the conce	pt of	Ther	mal a	naly	sis in medicin	e and industr	У		
UNIT					(	Conte	ents				No. of Hours
I	Princ Instru	caction Techniques biple- Instrumentat umentation and app application	ion a						-	-	18
II	Elect Analo	tronic Measuremen og and digital instrur loscope- Dual beam	nents	-com	pariso	on- B			trace		16
III	Class transe	sducers dification of Trans ducer- Strain gauge mistors- Thermoelec	s–Effe	ects of	of ch	ange	passive transdu s in temperatu				20
IV	Ther analy Appl Ther	mal Instrumentati mal Detectors: TG vsis), DSC(Differen ications ( Basic Idea mography: Block I nography	A(Th tial S as)	cann	ing C	Calor	imetry); Princ	ciple-Instrum	entation-		20
V	<b>Bio</b> M Bio a EMG	Medical Instrumen amplifiers- Bio pote G, ERG- Specific type forms.	ntials	- Bio			• •	-		Ĵ,	16
						Tot	al				90
					se O		mes				K Level
CO		ompletion of this co									
		III the principles of									K1
CO1		, neutron and electro									K2
CO1		se the instrument for ous labs for develop	-					0			K4 K5
		question session wi							50), [S <b>CIII</b>	1141	KJ K6

	Select the instruments and Develop their knowledge in understanding the various	K1						
	parameters of analog and digital instruments and explain the working of it, analyze the	K2						
CON	errors and rectify	K3						
CO2	to make use of it, Be adept in the usage of techniques, skills and modern tools for	K4						
	sustained professional development (PO4). Learn CRO:							
	https://eleceng.dit.ie/dsp/elab/ (PO7, PO3, PO9)							
	Define transducer, Compare active and passive transducer, Applications of	K1						
CO3	transducers, different types of transducers used for various measurement of	K2						
	physical quantities. <u>https://www.youtube.com/watch?v=w4GCDX8iOuA</u> ( <b>PO5</b> ,	K3						
	PO7,PO9) (PO3,PO4)	K5						
	Understand thermal methods analysis in industry and medicine, learnFunction of	K1						
004	instruments, <b>Deduct</b> qualitative and quantitative information relevant to the output							
CO4	based on temperature. Analyze their uses in different fields	K5						
	https://crimsonpublishers.com/mapp/pdf/MAPP.000509.pdf (PO3, PO4)	K6						
	Recollect the definition of electric potential, Illustrate the concept of recording the	K1						
	electric potentials regarding the functioning of human organs using ECG, EEG, EMG							
CO5	and ERG, types of electrodes, Analyzing the waveforms of ECG by visiting bio							
	instrument labs.(GD)globaljournals.org>GJMR_volume12 (PO3,PO4, PO5,PO9)	K4						
	Text Books							
1	Elements of crystallography – Dr.V.Velmurugan, MJP Publishers (Unit – I)							
2	Electrical and Electronic Measurements and Instrumentation - ER.R.K.Rajput, S.Chand(Ne	W						
2	edition)(Unit – II and III)							
3	Bio medical instrumentation- M.Arumugam, Anuradha agencies publishers, II edition(Unit	– IV and V)						
1	Reference Books							
1	Elements of X-Ray diffraction R.D.Culity							
2	Instrumental methods of chemical analysis, Gurdeep R. Chatwal Sham K. Anand (UNIT IV)							
3	Medical Instrumentation, Application and Design, John G. Webster, 3/E, John							
	Web Resources							
1	X-ray diffraction and structural analysis - nptelnptel.ac.in/courses/115103030/2							
	Neutron diffraction - nptelnptel.ac.in/courses/115103030/6							
2	https://en.wikipedia.org/wiki/Transducer							
3	biopotential amplifiers -							
5	WordPress.comhttps://hkumarblog.files.wordpress.com/2014/04/biopotential-amp.pptx							
4	Biopotential – Wikipedia https://sv.wikipedia.org/wiki/Biopotential							
5	https://www.medicalmagazine.in/thermography-and-its-applications-in-medical-and-clin	nical-						
5	research-field/							

		MA	PPING WITH	I PROGRA	AM OUTC	COMES				
Strongly Cor	related - 3		Moderately	y Correlate	Weakly Correlated – 1					
	РО									
CO / PO	1 Disciplinar y Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa l and internat ional perspec tive	10 Lifelon g learner s
<b>CO1</b>	3	2	1	2	1	-	2	1	1	1
CO2	3	1	2	2	1	-	2	1	1	1
CO3	3	1	2	2	1	-	2	1	1	1
CO4	3	1	2	2	1	-	2	1	1	1
CO5	3	1	2	2	2	1	1	1	1	1
AVG	3	1	2	2	1	-	2	1	1	1
TOTAL	15	6	9	10	6	1	9	5	5	5

		FIF	RST Y	EAR	SEM	IESTER –	II			
		QU	ANT	UM N	IECH	IANICS ·	- I			
						Credi	Inst		Marks	
Course Code	0.	L	Т	Р	S	ts	Ho urs	CIA	ESE	Total
24PPYC	C04 Core - IV	5	-	-	1	5	6	25	75	100
	-			U	0	ectives				
LO1	To make the student								chanics, Ir	nportance
	of wave function and				-					
LO2	To expose the stu representation of ope via solving Schrodin particles and their pr	erators thro ger equation	ough p	oicture	es, to	develop pr	oblem s	olving skil	ll among th	ne student
LO3	To enable the stude	nts, acqui	re kno	owled	ge or	orbital, s	spin and	total ang	ular mome	entum an
	commutation relation									
	outstanding problem	S						1		
UNIT		Co	ontent	S				]	No. of Hou	irs
	General formalism									
I	the wave function- Normalised and Orthogonal wave function - Expansion theorem - Conditions to be satisfied by the wave function-Solution of the Shroedinger time dependent and time independent equation-Stationary state solutions-Operators associated with different observables- Expectation values of dynamical quantities - Probability current density: Particle flux- Ehrenfest's Theorem - Dirac's- Bra - ket vectors - Dual space.									
	<b>Representation The</b>									
II	Coordinate and momentum representations – operators as matrices-Matrix form of wave function - Schrodinger equation in momentum representation theory - Matrix theory of harmonic oscillator-time evolution-Representation of operators in Schrodinger, Heisenberg and Interaction(Dirac) pictures.									
	Eigen value - 3D p	roblems a	nd Id	entica	ıl par	ticles				
ш	Eigen value - 3D problems and Identical particlesFree particle-the particle in a box-free axis rigid rotator-reduction of two body Hamiltonian - the hydrogen atom -totalangular momentum and spherical harmonics.System of identical particles - symmetric and anti-symmetric wave functions -bosons and fermions - construction ofsymmetric and anti symmetric wave functions - Pauli's spinmatrices and their commutation relations-the density operator,density matrix and its limitations.									
	Angular momentur									
IV	Commutation operator and its com operators[raising and	n relations	Eige	n valu	es of	$L_z$ and $L^2$	- ladder		12	

	*	
	$J^2$ - matrix representation (Eigen values) of angular momentum	
	operators $(J^2, J_Z, J_+ \text{ and } J)$ - addition of two angular momentum -	
	Clebsch-Gordon coefficients - calculation of C. G coefficients for	
	$j_1 = j_2 = 1/2.$	
	Stationary states – Approximation methods	
	Time independent perturbation theory-first order	
<b>X</b> 7	1 1 2	
V	correction to wave function and energy-non-degenerate case-the	10
	perturbed harmonic oscillator-degenerate level-Stark effect in	18
	hydrogen atom- variation method- application to ground state of	
	helium atom-WKB approximation - application to linear harmonic	
	oscillator.	
	Total	90
	Course Outcomes	K Level
CO	On completion of this course, students will	
	Recall postulates of quantum mechanics, What are wave	K1,K2,K3,K4
	functions?, List the properties of wave functions, Name the	
	operators, How will you solve Schrodinger time dependent and	
CO1	time independent equation? <b>Summarize</b> the operators associated	
	with observables. Group assignment on the development of	
	quantum mechanics using e-resources (PO2, PO5, PO9)	<u>11 110 110 115</u>
	Define operators, state coordinate and momentum	K1,K2,K3,K5
	representations, demonstrate operators as matrices, Explain	
	Schrodinger equation in momentum representation theory,	
CO2	Outline the matrix theory of harmonic oscillator, what is time	
002	evolution? Explain Heisenberg picture, Compare Schrodinger,	
	Heisenberg and Dirac pictures. Group discussion on the merits	
	and limitations of pictures. using e-resources(PO2, PO3, PO4,	
	PO5,PO9)	
	Define Eigen value and Eigen function, Refer: https://www.st-	K1, K2,K4,K5,K6
	andrews.ac.uk/physics/quvis/simulations_html5/sims/infwell1d/i	111, 112,111,110,110
	nfwell1d.html to understand probability density, <b>Describe</b> rigid	
CO3	rotator, <b>Give</b> the theory of reduction of two body Hamiltonian,	
005	Classify symmetric and anti-symmetric wave functions, Analyze	
	Pauli's spin matrices and their commutation relation, Explain	
	density matrix and its limitations. Construct symmetric and	
	anti-symmetric wave functions for six particle	
	system(PO3,PO4,PO7,PO9)	
	Recall momentum and angular momentum, Discuss Eigen values	K1,K2,K3,K5,K6
	of $L_z$ and $L^2$ , <b>illustrate</b> ladder operators, <b>Apply</b> ladder operators	
	to derive commutation relations with $J_z$ and $J^2$ , Analyze Eigen	
	values of angular momentum operators of $J^2$ , $J_Z$ , $J_+$ and $J$ , explain	
	the theory of Clebsch-Gordon coefficients, Calculate Clebsch-	
CO4	Gordoncoefficientsforj1=	
	5	
	j ₂ =3/2.Angularmomentumoperators-PPT-	
	https://www.powershow.com/view1/1daf5c-	
	ZDc1Z/51_Angular_momentum_operators_powerpoint_ppt_pres	
	entation. (PO9, PO7, PO3)(Problems)	
CO5	What is meant by degeneracy? differentiate between degenerate	K1,K2,K3,K4
	and non-degenerate levels, develop and explain the time	

	independent perturbation theory in the case of Stark effect in hydrogen atom, Use variation method to estimate the Eigen values and Eigen functions for the ground state of helium atom, Examine WKB approximation and it's applications. Additional information about WKB approximation using www.powershow.com//WenzelKramersBrillouin_Approximati on.								
	Text Books								
1	Quantum mechanics. Sathya Prakash - Kedarnath, Ramnath and Co. Publications.(All Units)								
2	Quantum Mechanics. Gupta, Kumar and Sharma - Jai Prakash Nath and Co, Meerut. 11 th edition.(Unit – II to V)								
3	A Text Book of Quantum Mechanics. P. M. Mathews and K. Venkatesan - Tata McGraw Hill, New Delhi, 2000								
	Reference Books								
1	Quantum Mechanics- A.K. Ghatak and S. Loganathan-McMillan India, 3 rd edition.								
2	Advanced Quantum mechanics. Sathya Prakash -Kedar Nath, Ram Nath and Co.								
3	Quantum Mechanics - V. Devanathan - Narosa Publishing - New Delhi, 2006Quantum Mechanics. V. K. Thankappan - Wiley - Eastern, New Delhi, 1985								
	Web Resources								
1	http://walet.phy.umist.ac.uk/QM/LectureNotes/								
2	www.powershow.com//Introduction_to_Quantum_Theory_of_Ang								
3	www.powershow.com//51_Angular_momentum_operators_power								
4	http://ocw.mit.edu/8-05F13 Bra ket vectors								

			MAPPI	NG WITH	PROGRAM	A OUTCO	MES								
	Strongly Correla	ted - 3	Ν	Ioderately	Correlated	- 2		Weakly Correlated – 1							
		РО													
CO / PO	1 Disciplinar y Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/wo rker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 National and international perspective	10 Lifelong learners					
C01	3	1	-	-	1	-	1	1	1	1					
CO2	3	2	2	1	1	-	1	2	1	1					
CO3	3	1	2	1	-	-	2	1	1	1					
CO4	3	1	2	1	-	-	2	1	1	1					
CO5	3	1	2	1	-	-	1	1	1	1					
AVG	3	1	2	1	-	-	1	1	1	1					
TOTAL	15	6	8	5	2	-	8	6	5	5					

			F	IRST Y	<b>ZEA</b>	<b>R</b> -	SEMESTEI	R – II			
			Μ	IATHE	EM	ATI	ICAL PHY	SICS - II			
							Credit	Inst.		Marks	1
Cours Code		ategory e/Ele/Sec	L	Т	Р	S	S	Hours	CIA	ESE	Total
24PPYC	205 Co	ore - V	4	1	-	1	5	6	25	75	100
				Le	arn	ing	Objectives				
L01	To learn to statisticall	-	omple	ex func	tion	is th	rough conto	ur integrals	and analy	ze numer	ical values
LO2	-			-	-		nction of Bi			Normal d	istribution
LO3		ate special f r properties	function	ons like	e Be	esse	l, Hermite, I	Legendre an	d Laguerre	e polynon	nials and
UNIT					С	ont	ents				No. of Hours
I	Analytic f polar form Cauchy's expansion theorem round the	n - Harmoni integral fc (Statement	Cauchy ic fund ormula t and j -Evalu	ctions - with proof control proof control	- si h p only of d	ngu roo ) -	conditions llar points – f –problem -Poles, Res nite integral	Cauchy's ir s Taylo idues - C	ntegral the r and La auchy's R	orem - urent's Residue	20
П	probability tendency - - mode- M Binomial - numeric moment g moments	y-binomial -mean – ari Aethods of c distribution cal problem generating f	theore thmeti lispers - morr ns-Pois function	m  of  prices means for means of the second se	roba n – j tano first istri umo mer	abili geo darc two but erica	tually exclu ty -simple p metric mear d deviation - o moments- ion – -mon al problems enerating fu	roblems. Ma – harmonia - numerical moment generations hents - firs – Normal	easures of c mean – r problems. nerating fu t two mo distributio	central median unction ments- on – -	20
III	Fourier se series to g Properties Fourier th Problems. Laplace t property - Theorem	generate squ - convolutio cansforms-A ransforms - transform c - Propertie ce transform	chlet c are, t on theo opplication lineatof deri es - ch	condition riangul prem- I ation of urity pr vatives ange of	ons ar a Foun of F rope s- ir f sc	and rier Four erty iver ale	alf range se saw tooth v sine and cos- ier transfor – change of rse Laplace property - sl of different	wave - Four sine transfor m-Heat tra of scale pro- transform- nifting prop	rier transform -Deriva nsfer equ operty - s Fourier - erty- Appl	orms – ative of ations- hifting Mellin ication	20

IV	<b>Special Functions - I</b> Beta and gamma functions – properties -Bessel differential equation - recurrence relations and generating function for $Jn(x)$ - orthonormality of Bessel function. Hermite differential equation - Hermite polynomials - generating function - recurrence relation - Rodrigue's formula - orthogonal property of Hermite polynomials.	15
	Special functions - II	
V	Legendre differential equations – Polynomials - generating function - recurrence relations - Rodrigue's formula - orthogonal property - Laguerre differential equations – Polynomial - generating function - recurrence relations - Rodrigue's formula - orthogonal property.	15
	Total	90
	Course Outcomes	K Level
CO	On completion of this course, students will	
<u>C01</u>	<b>Recal</b> complex numbers and their properties. <b>Extend</b> the idea to complex variables and <b>outline</b> the concepts of analyticity, poles and residues. <b>Identify</b> analytic functions and Harmonic functions. <b>Develop</b> Cauchy-Riemann equations, Cauchy's integral formula and Cauchy's integral theorem for analytic functions. <u>https://nptel.ac.in/courses/115/105/115105097/</u> . <b>Compare and contrast</b> Taylors and Laurent's series for simply and multi-connected regions and apply the same. <b>Evaluation</b> of definite integrals of trigonometric functions round the Unit circle.	K1 K2 K3 K5 K6
CO2	How is statistical analysis and probability important as a tool in scientific	K1
	calculations? Classify mean, median, mode and standard deviation as a measure of	K2
	central tendency and <b>illustrate</b> the concepts by <b>using</b> numerical problems.	K3
	Analyze different distribution functions and distinguish them (Binomial, Poisson	K4
	and Normal). <b>Group project</b> : Refer e-resource - <b>Formulate</b> basic theory of errors,	K6
	their analysis, and estimation with examples of simple experiments in Physics with excel(PPT).[K6 PO2,PO3,PO5,PO7,PO9]	110
CO3	What are periodic functions and explain the Fourier analysis of periodic functions	K1
	with Dirichlet conditions - Application of Fourier series to generate square,	K2
	triangular and saw tooth wave. Fourier and Laplace transforms –Properties-	K3
	Fourier sine and cosine transform - <b>Interpretation</b> of Fourier transform-Heat	K4
	transfer equations- <b>Problems</b> . Fourier - Mellin Theorem - Application of Laplace transforms to <b>solve</b> differential equations with constant coefficients- Problemshttp://epgp.inflibnet.ac.in/Home/ViewSubject?catid=25 [K5 <b>PO2</b> , <b>PO3</b> , <b>PO5</b> ].	К5
CO4	Define and evaluate Beta, and Gamma functions and analyze their applications in	K1
	estimating integrals. Explain the special functions, such as the Hermite and Bessel	K2
	functions and their differential equations. Develop the polynomial of Hermite and	K3
	Bessel functions and <b>estimate</b> the values of polynomials <b>.Discuss</b> their properties such as orthogonality.	K4
CO5	<b>Explain</b> the special functions, such as the Legendre and Laguerre functions and	K1
	their differential equations. <b>Develop</b> the polynomial of Legendre and Laguerre	K2
	functions and <b>estimate</b> the values of polynomials. <b>Discuss</b> their properties such as orthogonality.(Sci-lab)	K3,K4
	Text Books	
	Books for problems: Worked out problems Mathematics Physics, H. K. Dassand Mathematical Phy Satyaprakash are encouraged.	sics,

1	SathyaPrakash – Mathematical Physics – 14th Edition – 1999 - Sultan Chand and Co. (All Units)								
2	H.K.Dass and Rama Verma-Mathematical Physics- 1997-Sultan Chand and Co (All Units								
3									
	Reference Books								
1	Fourier Analysis – Schaum Series – M. R. Speigel, Tata Mc GrawHill, NY								
2	Theories and Problems of Laplace transforms - Schaum Series - M. R. Speigel,								
	TataMcGrawHill, NY								
3	Complex Variables - Vectors and tensors -Schaum Series - M. R. Speigel, TataMcGrawHill, NY								
	Web Resources								
1	http://www.mpipks-dresden.mpg.de/~jochen/methods/outline/html								
2	http://phy.syr.edu/~trodden/courses/mathmethods/								
3	http://dmoz.org/Science/Physics/Mathematical_Physics/								
4	http://www.thphys.nuim.ie/Notes/engineering/frame-notes.html								
5	http://www.thphys.nuim.ie/Notes/frame-notes.html								

			MAPI	PING WITH	I PROGR	AM OUTC	COMES				
	Strongly Correlated - 3     Moderately Correlated - 2     Weakly Correlated - 1										
				F	0						
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commun icator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitally Efficient	8 Ethical awareness/ reasoning	9 National and international perspective	10 Lifelong learners	
CO1	3	1	2	1			1	1	1	1	
CO2	3	2	2	1	2	1	3	2	1	1	
CO3	3	1	2	1	2	1	1	1	1	1	
CO4	3	1	2	1			1	1		1	
CO5	3	1	2	1			2	1	1	1	
AVG	3	1	2	1	1		2	1	1	1	
TOTAL	15	6	10	5	4	2	8	6	4	5	

			F	TIR	ST YI	EAR	- SEMESTER	R – II			
		PRAC	TIC	AL	S II-	ADV	ANCED EL		CS	<b>.</b>	
Cou Coo		Category Core/Ele/Sec	L	Т	Р	S	Credits	Inst. Hours	CIA	Marks ESE	Total
24PPY	<b>C06</b>	Core -VI	-	-	6	-	5	6	25	75	100
L01	Ctuda	nto mill he shie to	1				g Objectives	ainauita mui	neinle of f	lin flores	
LUI		ents will be able to r supplies, oscillato					als of digital	circuits, pri	incipie of fi	np nops	, constru
LO2		will be able to lear						for 8bit and	16bit arith	metic op	erations,
LO3		ransfers using varion will be enabled to						ms and exec	rute		
UNIT				,		Conte					No. of Hours
	C01										4
Ι		al IC Regulated Po	wer	Sur	nlv –	Con	struction of V	Voltage follo	wer		•
	CO2			1	·P-J						24
		-AMP- Wien's brid	ge ()	)sci	llator						
II		-AMP- Phase shift	-								
		-AMP - waveform				uare	and triangula	r waves			
		olving simultaneou	-		-		-	i wuves			
		struction of Astabl									
		struction of Schmi					C				
	CO3			550	1 4511	15 55					16
		ification of Boolea	n ovi	arou	naion	SO	D and DOS m	athod			10
III		f adder and Full ad	-						and actor		
					•		C	1 0	U		
	Nand	alf Subtractor and F gates	ull S	oud	iracio	r - 51	mpinication	using K map	o - Using		
		udy of R-S, clocked oflops using 7476			nd D f	lip fl	op using NAI	ND /NOR an	nd J-K, D a	und	
	<b>CO4</b>										24
IV	12.Sh	nift left register, Rir	ıg co	unt	er and	l Joh	nson counter				
_ •	13.Sy	unchronous and Asy	nch	ron	ous (u	ıp an	d down) coun	ter using IC	74193		
	14.De	esigning n- modulo	coui	nter	using	g IC '	7490				

	15.Binary Adder / Subtractor using IC 7483	
	16. Study of D/A converter - R-2R ladder network- resolution and accuracy.	
	C05	20
V	17. Study of ALU.	
	18. Frequency counter to count up to 99	
	19.UJT - Characteristics and construction of relaxation oscillator	
	Total	90
	Course Outcomes	K Level
CO	On completion of this course, students will	
CO1	Construct power supplies using active and passive components https://youtu.be/KE5QJtU6ZA8	K1 ,K2,K3, K4 , K6
CO2	Understand the concept of OPAMP to construct oscillators and vibrators. https://youtu.be/gbUXbaxvX94	K1, K2,K3, K4 ,K5
CO3	Construct circuits to demonstrate the principle of flip flops and to verify truth tables.	K1, K2,K5, K6
CO4	Acquire proficiency to construct and analyse registers, counters and converts used in digital circuits. <u>https://youtu.be/gEGq1vozv9g</u>	K1, K2,K3, K4,K5
CO5	Apply theoretical knowledge acquired about electronic components and design circuits.	K1, K2,K3, K4,K5, K6

2	Strongly Corre	elated - 3	Mo	derately Co		- 2		Weakly Co	orrelated – 1	
					РО					
CO/PO	1 Disciplinary Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player /worke r	6 Skilled project manager	7 Digit ally Effici ent	8 Ethical awareness/ reasoning	9 National and international perspective	10 Lifelong learners
CO1	3	1		1	2	1	1	1	1	1
CO2	3	2	1	1	2	1	1	1	1	1
CO3	3	2	1	1	2	1	1	1		
CO4	3	1	1	1	2	1	1	1	1	1
CO5	3	1	1	1	2	1	1	1		
AVG	3	2	1	1	2	1	1	1	1	1
TOTAL	15	7	4	5	10	5	5	5	3	3

			FI	RST	T YE	EAR - SEMES	STER – II			
			ADV	VAN	ICE	D NUCLEAR	PHYSICS			
Course Code	Category Core/Ele/Sec	L	Т	Р	S	Credits	Inst. Hours	CIA	Marks ESE	Total
24PPYE3A	DSE - III	4	-	-	1	3	5	25	75	100
	1			Ι	Lear	rning Object	ives			
LO1	To understand the	adva	ince	d nu	iclea	ar models and	l special types	of nuclear r	eactions.	
LO2	To learn neutrino j					*				
LO3	To gain knowledg Abdus Salam mod			-		•		AIT bag mo	del of hadroi	
UNIT						Contents				No. of Hours
Ι	Nuclear Interacti Nucleon - Nucleon wave analysis of n theory Proton - Differences betwe scattering: (n-p) ar	n sca -p so Prot en (	catte ton s p - j	ring scatt p) a	g -Sp terir Ind	oin dependen ng below 10N (n - p) scatte	ce of nuclear AeV: Theory ering - High o	forces – Effe and Experin	ective range nental data-	15
П	Nuclear Models Introduction – Fer model - Collective analysis of Vibrati model - Optical M	e mo onal	del o speo	of B	ohr	and Mottelso	on: Vibrationa	al states – M	athematical	10
III	Special Types of I Compound nucleu Breit – Wigner dis up reactions – Nu induced nuclear re nuclear reactions reactions.	Nucl s rea spers clean actic	ear actio ion f tran	ons - forn nsm - α-j	- Co nula utat parti	ompound Nuc - Direct react ion: Proton i icles induced	ctions – Theor nduced nucle nuclear reacti	ry of strippin ar reactions ons – Neutre	ng and pick- – Deuteron ons induced	15
IV	Neutrino Physics Pauli's Neutrino H Experimental veri Alikhanov experim β-decay rates – Atmospheric neutr	Iypo ficat nent Sola	ion – Co r no	of 1 owa	the in ai	existence of nd Reines exp	Neutrino: Le periment – Ne	ipunski's ex eutrino mass	and double	15
V	Quark Model and Quark model of h (QCD) – Propertie ideas on MIT bag conservation in w Unification of fun Weinberg and Abc Grand Unification	adro adro s of g mc veak dame lus S	eak l ns – QCI odel inte ental alan	- Co D: C - T erac l int n m	olou olo au tion erac ode	r quantum nu ur confinemen - Theta puzz s - Exchang ctions: Electro-w	nt– Asymptot le – Weak in e bosons of oweak unifica	ic freedom - nteraction - the weak in tion - Ba	Elementary Parity non- nteraction - sic ideas of	20
						Total				75

	Course Outcomes	K Level
CO	On completion of this course, students will	
	Recall the basic properties of nuclear forces and understand the interaction between	K1
	nucleons [PO2]. Analyze the proton scattering, which reveals strongly- correlated	K2
CO1	proton-neutron pairs in atomic nuclei [PO3]. Apply proton-proton scattering to obtain	K3
	the information on nuclear structure [PO4]. Compare (p-p) and (n-p) scattering.	K4 K5
	<b>Relate</b> the Fermi gas model that pictures the nucleus as a degenerate gas of protons	KJ K1
	and neutrons with the electron gas in metals. <b>Comprehend</b> the features of the nucleus's	K1 K2
	liquid drop and shell models to study the collective model, which incorporates the	K4
CO2		
02	aspects of both models <b>[PO2].Analyze</b> , how the collective model, can explain certain	
	magnetic and electric properties that neither of the two separately can explain <b>[PO3]</b> ,	
	[PO4].	
	<b>Understand</b> nuclear transmutation entails a change in the structure of atomic nuclei. <b>Recollect</b>	K1
CO3	and <b>analyze</b> induced nuclear reactions by protons, neutrons, deuterons, $\alpha$ , $\beta$ and $\gamma$ particles	K2
005	[PO3].(Seminar Presentation/PPT on special types of nuclear reactions through any	K4
	technical tool) [PO5], [PO7] [PO4].	
	<b>Remember</b> the basics of the $\beta$ -decay process that concerns neutrinos. Explain the	K1
~~ .	different experimental methods which support the existence of neutrinos. Understand	K2
CO4	the origin of neutrino masses and mixing and of the symmetries governing the lepton	K3, K5
	sector of particle interactions [PO2]. (e -quiz on neutrinos) [PO7] [PO4]	
	<b>Recollect</b> and visualize the quark model, which is a classification scheme for hadrons	K1
	in terms of their valence quarks. Comprehend the concept of colour quantum number	K2
CO5	and colour confinement in QCD. Apply the concepts of the Bogoliubov model to	K3
005	study MIT bag model. Analyze the parity violation in weak interaction and the	K4
	electro-weak unification in Abdus Salam model (discussions).(e-quiz on	
	quarks)[[PO2],[PO3]& [PO7][PO4] Text Books	
	Nuclear Physics and Particle Physics –Sathyaprakash, Sultan Chand & Sons, 5 th edition	n 2005
1	(Units I - V).	11 2003
2	Nuclear Physics – Dr. S.N. Ghoshal, S.Chand, Revised edition 2020 (Units I – V)	
3	Fundamentals of Nuclear Physics - Jahan Singh, Pragati Publication. (Unit III, IV and	V)
	Reference Books	
1	Nuclear Physics – D.C. Tayal, Himalaya Publishing House, 5th edition 2021 (Units I –	- V)
2	Concepts of Nuclear Physics, B.L. Cohen, Tata McGraw Hill	
3	Nuclear and Particle Physics, W.E. Burcham and M. Jobes, John Wiley and Sons.	
	Web Resources	
1	https://en.wikipedia.org/wiki/Cowan-Reines_neutrino_experiment	
2	http://courses.theophys.kth.se/SI2350/reports/fleischmann.pdf	
3	Physics   Nuclear Reactions   Pauli's Neutrino Hypothesis   by	
5	https://www.youtube.com/watch=MuhHgTVQNZE	
4	Quantum ChromoDynamicshttps://arxiv.org/pdf/hep-ph/0505192	
5	https://www.britannica.com/science/electroweak-theory	

		MA	PPING WITH	I PROGR	AM OUTC	COMES				
Strongly Co	rrelated - 3		Moderately	y Correlate	ed - 2		W	eakly Cori	related – 1	L
	PO									
CO / PO	1 Disciplinar y Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa I and internat ional perspec tive	10 Lifelon g learner
CO1	3	1	2	1			1	1		
CO2	3	1	2	2			1	1		
CO3	3	2	2	1	1		2	1		1
CO4	3	1	2	2			1	1		1
CO5	3	2	2	2	1		2	1	1	1
AVG	3	1	2	2	1		1	1		1
TOTAL	15	7	10	8	3		7	5	1	3

				F	IRS	T YI	EAR - SEMESTE	R – II			
					AD	VAN	NCED ELECTR	ONICS			
Course Code		ategory ore/Ele/ Sec	L	Т	Р	s	Credits	Inst. Hours/ Week	Total		
<b>24PPYE</b> .		SE - III	4			1	3	5	75	100	
24FF1E.		5E - III	4	-	-	-	ning Objective	-	25	15	100
LO1	To under	stand perip	hera	l dev			blied to microproc		nicrocontro	ollers.	
LO1 LO2							evices with micro				
				÷ .			on satellite comm	1			will be
							sing 8085 interfa				
LO3							lied to microproc				
		1_1					-				No. of
UNIT							Contents				Hours
I	Peripher . Interfac diagram section –	ing 8255 to of 8279 – K Interfacing	– Ha 808 Keybe of 8	and s 35 - 1 oard 279	shak Prog sect with	e sig gram tion 1 808	nals – Programm mable keyboard/ – Scan section – 3 35	display interf	face – 827	9 - Block	15
п	Introduct counter – function	- Program n registers of	out fu nemo 805	inction ory – 1 – L	ons - Da /O p	of 80 ta m orts	51 D51 – Internal arc emory – Internal – Timers and Co iate, register, dire	RAM and re ntrol register	egisters - S rs Interro	Special upt	15
III	8051 Ins Instruction Assembly	y language	951 - prog	Arit	thme ming	etic, g - si	Logical, Data mo mple programs to nd division - 8 b	o illustrate ar	ithmetic ar	nd logical	15
IV	Antenna- Antenna	n field and Ungrounde	ed λ/	2 Ai nal	nteni Higi	na-7 h F	tance of a short Antenna Arrays-I requency Anten on.	Broadside and	d End Side	e Arrays-	15
V	Satellite Satellite calculatio	<b>Communi</b> Communi on; Link ca Multiple	<b>catic</b> catio lcula	on: n: ( tion	Orbi - lir	ts, ık m	Station keeping odels – system pa es; Transponder	arameters – li	ink equation	ons – link	15
							Total				75
							Dutcomes				K Level
CO	-	oletion of th									
CO1							tional amplifier s for various ca				K1 K2 K3

	frequencies. <b>Solving</b> simultaneous and differential equations. <b>Demonstrate</b> Op - amp	
	as regenerative comparator. <u>https://www.youtube.com/watch?v=9cxzu2-85II</u> ( <b>PO2</b> )	
	What is the condition of oscillation? Construction of sinusoidal and non-sinusoidal	K1
	oscillators. Analyze their waveforms. Explanation of A/D and D/A converters.	K2
CO2	Compare different types and justify their merits and demerits. (Seminar-PPT-	K3
02	Questions)Practicesheets:	K4
	http://tuttle.merc.iastate.edu/ee201/quiz_practice.html ((PO2, PO5, PO7, PO3,	K5
	PO4, PO6, PO9)	17.1
	<b>Explain</b> pin functions of 8085 and Architecture of 8085. <b>Compare</b> Machine language	K1
001	and Assembly language. Why addressing modes are needed? Summarize	K2
CO3	Instructions set and addressing modes of 8085. <b>Create</b> timing diagram for READ and WRITE memories.	K5 K6
	https://www.youtube.com/watch?v=zAXAb_ttazY. (PO7)	KU
	<b>Build</b> assembly language program to perform arithmetic and logical operations.	K1,K2
	<b>Develop</b> multiplication program to find the square of a given number. <b>Demonstrate</b>	K1,K2 K3,K6
<b>CO4</b>	the program for BCD to Binary and Binary to BCD code conversion. <b>Define</b>	113,110
	debugging.	
	<b>List</b> the types of memories. <b>Explain</b> the concept of interfacing and. I/O Operations,	K1, K2
0.05	<b>Demonstrate</b> Interrupt circuits and DMA. <b>Function</b> of Support chip and <b>applications</b>	K3,K4
CO5	as Programming the I/O ports and the timer. (Group Seminar-PPT-Questions) (PO2,	
	<b>PO5, PO7</b> )	
	Text Books	
1	Fundamentals of 8085 microprocessor, V.Vijayendran -Viswanathan Pub.( nit I, II, III)	
2	Fundamentals of 8086 microprocessor- V.Vijayendran -Viswanathan Pub .( Unit I, II, I	II)
3	Communication systems, B.P.Lathi, Willey eastern ltd. (Unit IV,V)	
1	Reference Books	
1	Microprocessor and its applications, Nagoorkani, first edition, RBA publications, 1999	
2	Electronics Communication system by G.Kennedy . Davis .Tata Mc Graw Hill Pub.	
3	Electronic Communications - Dennis Roddy and Coolen , Prentice Hall of India, IV Ec	lition,1995
	(Unit IV,V)	
	Web Resources	
1	https://www.ectnote.com/2009/12/8255-programmable-peripheral-interface.html	
2	https://www.tutorialspoint.com > > Satellite Communications	
3	https://www.tutorialspoint.com > Microprocessor > Programmable Peripheral Interface	
4	https://www.elprocus.com/led-interfacing-with-8051-microcontroller/	
5	https://www.slideshare.net/ishanegi35/antennas-wave-and-propagationEC6602 ANTE	NNA and
5	WAVE PROPAGATION - ppt downloadslideplayer.com/slide/10388121/	

		MA	PPING WITH	I PROGRA	AM OUTC	COMES					
Strongly	Correlated - 3		Moderately	y Correlate	ed - 2		W	eakly Cori	related – 1	L	
	РО										
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa I and internat ional perspec tive	10 Lifelon g learner	
CO1	3	1	1	1	-	-	1	1	1	1	
CO2	3	1	3	1	1	-	2	1	2	1	
CO3	3	1	3	3	3	2	1	1	1	1	
CO4	3	1	1	1	-	-	1	1	-	1	
CO5	3	1	2	2	1	-	1	1	1	1	
AVG	3	1	2	2	1	-	1	1	1	1	
TOTAL	15	5	10	8	5	2	5	5	5	5	

			FIR	ST YI	EAR – S	SEMESTER	II			
		Р	HYS	SICS A	ND Al	RCHAEOLO	OGY			
Course Code	Category Core/Ele/ Sec	L	Т	Р	S	Credit s	Inst Hrs	CIA	Marks ESE	S Total
24PPYG1A	GE - I	4	-	-	1	3	75	25	75	100
				Lear	ning C	bjectives		•	•	
LO1	To enable studen the investigation			ried de	epartm	ents to unde		· ·		al role in
LO2	To make students of India (ASI) an	s gain	basio	e knov	vledge	about the ro	ole played	by the Ar		cal Survey
LO3	To delve deep in	to cons	struc	tion o	f vario	us analytica	l tools wh	nich play a	n imperati	ive role in
	the field of archa	eology	/.							
UNIT					Cont	ents				No. of Hours
I	Introduction to Archaeology – def and its types. Di Architecture – Ro India – Lothal (G (Maharastra).	finition visions ock pair	– Ar in nting	chaeol archae s – Te	ology erracott	- Epigraphy a artefacts. I	– Numis mportant	smatics – . excavation	Art and sites in	15
п	Archaeological S History of ASI – archaeology depar Tamil Nadu – Ho chronology – bor conservation. Impo	Contril rtment ow old ne anal	butio – Im is ol ysis	n of In portan d - Ge – poll	ndian s it contr eneral i en ana	ibutions - Si methods used lysis – Tree	gnificant 1 for inves	excavation stigation –	sites in relative	15
III	Analytical Tools Fourier Transform schematic diagram compounds in pott Energy Dispersive – Schematic diagr pottery shards.	s used n Infrar n – wo tery sha Analys	in A ed Sj orkin urds. sis of	g – an	eology scopy ( nalysis s (EDA	– <b>Spectroso</b> FTIR) – Prin by IR techn X) – principl	e – instrum	FIR spectro etection of nentation o	organic f EDAX	15
IV	Analytical Tools Optical Microscop of structural mor ceramic pots. Scanning electron working (diagram) shards excavated i	pe – Prip phology micros ) – app	ncipl y of scope licati	e – con ancies e – pris ons –	nstruction nt artif	on and worki acts – Ivory - Electron m	ng (with d beads, T icroscope	erracotta a	artifacts, tion and	15
V	Archaeological Introduction – Da the Earth – Archae Major Findings – I (Ornaments) – Bu	<b>Dating</b> ting me co-mag Damase	g and ethod netic cus st	<b>d Maj</b> ls – De dating teel (W	endroch g – Strat /eapon)	tronology – l tigraphic dati	Radiocarbo ng – Artifa	on dating – actSeriation	1.	15
					Tot	al				75
		(	lour	se Ou	tcome	s				K Level

CO	On completion of this course students will	
CO	On completion of this course, students will	
CO1	<b>Understand</b> the basic concepts of archaeology, and <b>Define</b> important terms involved in archaeology. <b>Understand</b> the pre-historic age and its types, and also the divisions in archaeology <b>Identify</b> the important excavation sites in India.Assignment on the various divisions of archaeology (Epigraphy – Numismatics – Art and Architecture – Rock paintings – Terracotta artefacts).	K1,K2,K3 K5
CO2	RelateASI and State Archaeology Department. Understand the contribution ofIndian scientists to archaeology.Identifythe significant excavation sites in TamilNadu.Examinethegeneralmethodsusedforinvestigation.GroupdiscussionMuseums in Tamil Nadu.	K1,K2,K3 K5,K6
CO3	<ul> <li>DifferentiateFTIR and EDAX. Understand the construction and working of FTIR and EDAX instruments. Investigate the organic compounds and elemental distribution of pottery shards using above techniques. Group DiscussionMajor results obtained by using the FTIR AND EDAX techniques.</li> </ul>	K1, K2, K3, K4
CO4	<b>Define</b> the different terms that help understand working of microscope. <b>Understand</b> how optical microscope and electron microscope works. <b>Discuss</b> the structural morphology of ancient artefacts. <b>Assignment</b> on Keezhadi excavations.	K1, K2, K4, K5
CO5	List the different dating methods used in archaeology. Explain the physics behind the major findings of archaeology. Seminar on dating methods. Group discussion, PPT on major findings of archaeology.	K1, K2
	Text Books	
1	Scientific methods in medieval archaeology, M.J.Aitken	
2	Fundamentals of spectroscopy, C.N Banwell Tata McGraw Hill	
3	Spectroscopy, Gurdeep Chatwaal, Himalaya Publishing House.	
	Reference Books	
1	Molecular structure and spectroscopy,G.Aruldhas, Prentice Hall, New Delhi	
2	A textbook of nanoscience and nanotechnology, T.Pradeep, McGraw Hill Edu Pvt.Limited.	cation (India)
3	Keezhadi –Archaeological Department, Tamil Nadu.	
	Web Resources	
1	https://www.deshbandhucollege.ac.in/pdf/resources/1585214200_PHY(H)-VI- NANO_MATERIAL-1-AJAYPRATAP.pdf	
2	https://serc.carleton.edu/research_education/geochemsheets/elementmapping.htt	ml
3	https://en.wikipedia.org/wiki/Optical_microscope	
4	https://crowcanyon.org/education/learn-about-archaeology/archaeological-datin	g/
5	https://archaeology.ncdcr.gov/blog/2021-04-14/relative-absolute- dating#:~:text=In%20radiocarbon%20dating%2C%20the%20amounts,the%20p 0animal%20died.	

Strong	gly Correlated - 3		Moderat	ely Correla	ted - 2		W	eakly Cor	related – 1	l				
		РО												
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commun icator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 National and internati onal perspect ive	10 Lifelor g learner				
CO1	3	1	1	1	1	-	1	1	2	1				
CO2	3	2	2	2			2	1	3	2				
CO3	3	1	2	1	1	-	2	1	-	1				
CO4	3	1	2	1			1	1	1	1				
CO5	3	1	1	1	1	-	2	1	1	1				
AVG	3	1	2	1	1	-	2	1		1				
TOTAL	15	6	8	6	3	-	8	5	,	6				

				FIRS	ST YE	CAR - SEMEST	ER – II			
					AS	<b>FROPHYSIC</b>	S			
Course Code	Category Core/Ele/SecLTPSInst. CreditsInst. Hours/ 									
24PPYG1B	GE-I	4	-	-	1	3	5	25	75	100
					Lear	ning Objectiv	res			
L01	To know about the	ne So	lar sy	stem	,					
LO2	To understand the	e Stel	llar e	volut	ion					
LO3	To have an idea	of ga	alaxie	es and	d ins	trumentation				
UNIT						Contents				No. of Hours
Ι	<b>Introduction</b> Astronomers and Emission and a Luminosity									15
Ш	Solar system Solar system - T of sun-Photosphe Lunar-Time of C	ere- C	Chron	nospł	nere -	- Sun spots - S	Solar flares- E	1		15
III	Stellar Evolution Spectral classifica –Ageing –Death Neutron stars - B	ation of sta	ar- Sı	ıpern		•			•	15
IV	Galaxies Stellar populatio Elliptical galaxy				0	0		• • • •		15
V	Astronomical In Classification o Telescopes - Sigr	strui f Te	ment lesco	s pes-	Optio	cal Telescope	- Reflector 7	Felescope -	Radio	15
						Total				75
~ ~						tcomes				K Level
CO	On completion of									
CO1	Remember basic of life https://nptel.ac.i ps://www.nasa.g eclipse-58 (Intera	n/co jov/a	Hi u <b>rses</b> udier	story /121/ nce/fe	/104/.	of <b>121104006</b> /	famous	Astron	omers-	K1 K2 K3
CO2	Recalling Sola Composition, La Occurrence, Fin https://solarsysta https://theskyliv https://www.yout	ar sy earn ad ou em.na e.con	ystem abou t Sim asa.go n/3ds	n, cla t Sola ilarit ov/mo olars	ar fla ies ai oon ysten	res, Eclipses- S nd Differences ns/overview/ (1	Solar, Lunar, 7 . Discussions <b>PO</b> 9)	Time of with		K1 K2 K3 K4

	· · · · · · · · · · · · · · · · · · ·	
	Recollect about Stars, Categorize Stars, Gain knowledge about Lifecycle of the	K1
CO3	stars, white dwarfs Chandrasekhar limit, Neutron stars, Black holes	K2
005	(Students in groups to recollect the age of Sun with other Stars and submit	K3
	typed report) (K6 in PO4, PO5,PO7, PO9)	K4 ,K5,K6
	Remember Galaxies, Learn about Milky way, Stellar populations, List down Types	K1
<b>CO4</b>	of galaxies, Study about origin of galaxies.	K2
C04	https://skyandtelescope.org/astronomy-resources/stargazing-basics/learn-the-	K3
	sky/(PO9)	
	Classification of Telescopes-, Learn and find out Significance of star chart,	K1 K2
CO5	Study about X-Ray Astronomy( students in groups to read the monthly star	K3 K5
	chart submit typed report) (K6 in PO4, PO5, PO9)	K6
	Text Books	
1	Introductory Astronomy- Nicholas and Thomas, Wesley publishing Company II	
1	Encyclopedia-Space (Unit-I,II,III)	
2	Modern Physics – R. Murugesan, S. Chand and Co (Unit-III)	
4	X-ray Astronomy : K D Abhyankar (Unit V)	
	Reference Books	
1	Introductory Astronomy- Nicholas and Thomas, Wesley publishing Company	
2	Fredrick and Baker, Astronomy10th edition, D.Van Nostrand company(1976)	
3	Kaufmanns, Universe3rd edition W.H. Freeman and company	
	Web Resources	
1	https://www.nasa.gov/audience/forstudents/5-8/features/nasa/what-is-an-eclipse-58	
2	https://www.youtube.com/watch?v=n1y8w0F8R3s- Sun www.space .com	
3	<u>https://www.youtube.com/watch?v=zzbCEF37MfU</u> – Solar System	
4	https://www.youtube.com/watch?v=zRSPMkUXdMc - Galaxies	
5	https://www.youtube.com/watch?v=RdrGcg_WNaM-Celestial objects	

		MA	PPING WITH	I PROGRA	AM OUTC	COMES				
Strongly C	orrelated - 3		Moderately	Correlate	ed - 2		W	eakly Cori	related – 1	L
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa l and internat ional perspec tive	10 Lifelon g learner s
CO1	3	1	1	1	1	-	1	1	2	1
CO2	3	2	2	2	-	-	2	1	3	2
CO3	3	1	2	1	1	-	2	1		1
CO4	3	1	2	1	-	-	1	1	1	1
CO5	3	1	1	1	1	-	2	1	1	1
AVG	3	1	2	1	1	-	2	1		1
TOTAL	15	6	8	6	3	-	8	5		6

			F	RST	'YE	AR - SEMEST	TER – II									
	COM	PUTA	TION	NAL	PHY	YSICS I- NUN	MERICAL M	ETHODS								
Course Code	Category Core/Ele/ Sec	L	Т	Р	s	Credits	Inst. Hours	CIA	Ma ES	arks SE	Total					
24PPYS01	SEC- I	1	1	-	-	$\frac{1}{2}$	2	25	7	5	100					
				L	learı	ning Objectiv	/es									
L01	To provide the	basic	conce	pt of	a fe	w numerical	methods									
LO2	To understand	the me	ethod	of so	olvin	g different kir	nd of numeric	al problem	s in Pł	nysics	8					
LO3	To familiarize	the stu	dents	of M	1.Sc.	students with	n the numeric	al methods	used i	n coi	nputation					
UNIT					C	Contents				No.	of Hours					
Ι	Roots of equat Bisection methonon linear equa	od – it					1	d. Solution	ns of		5					
II	Numerical diff Newton's forw intervals)- der difference- Lag	vard a ivative	nd ba es of	ickw ył	base	d on Newton	n's forward	and backy			10					
III	Numerical interpretent Trapezoidal Ru Principle of lea $= ax^b$ (iii) poly $ae^{bx}$ .	ıle – S .st squ	limpso ares –	on's Fitti	1/3 1 .ng a	Rule – Simps /an (i) straigh	nt-line ii) curv	ve of the for	m, y		5					
IV	Solution of equ Solution of ord method – Rung	dinary	diffe					Modified H	Euler		5					
V	Solving Simult Solving Simult by Gauss elimit	taneou aneou	<b>is Eq</b> s Equ	<b>uatic</b> ation	o <b>ns</b> .s- G	auss eliminati	on method- N	Aatrix inver	rsion		5					
						Total					30					
						comes			[	ŀ	K Level					
CO	On completion			,												
	Recollect the										K1 K2					
	understand di										K2 K4					
CO1	familiarity with Raphson meth										K4 K5					
	solutions	of		n-lin		equation		(e-resourd	-		K5 K6					
	https://www.yo					-		(0 1050010			110					
								gh interpol:	ation		K1					
0.04	_		-			-	Acquire basic knowledge in <b>Estimating</b> the missing data through interpolation									
CO2	methods. <b>Integrate</b> the ideas to <b>analyze</b> errors by difference tables. <b>Develo</b> skills in analyzing the methods of interpolating a given data. Evaluat										K2					
	SKIIIS III allaly	zing				•	y difference		-		K2 K3					

	conceptual based problems to understand Newton's and Lagrange's	
	interpolation formula.	
	[ <b>PO</b> 3] <u>https://nptel.ac.in/courses/111/107/111107105/</u> [ <b>PO</b> 7] GC	
	Understand Newton's forward and backward difference formulae to	K1
	determine the derivatives. Recollect the basics of differentiation and	K2
<b>CO3</b>	integration to solve ordinary differential equations. Apply Euler's method and	K3
000	Runge-Kutta method to <b>solve</b> a single ordinary differential equation for one or	K4
	two steps of the independent variable	K6
	[PO2] [PO3] Apply General quadrature formula to derive Trapezoidal Rule and Simpson's	K1
	Rule	K1 K2
	<b>Develop</b> skills in <b>Analyze</b> the properties of curves of best fit to the given Curve	K2 K3
CO4	fitting. <b>Evaluate</b> principle of least squares and Fitting different curves.	K5
	https://nptel.ac.in/courses/111/107/111107105/, e-quiz on curve fitting	
	[ <b>PO</b> 7, <b>PO</b> 4]	
	Comprehend solving simultaneous equation Construct matrix inversion by	K1,K2,K4
CO5	gauss elimination method <b>Compile</b> [K6] 2x2, 3x3matirices using gauss	K5,K6
	elimination method[ <b>PO5</b> ][ <b>PO7</b> ] e-quiz on Gauss elimination	
	method[PO7,PO4] Text Books	
	Numerical methods- Dr .P. Kandasamy, Dr. K. Thilagavathi, Dr. K. Gunavathi	S Chand and
1	company Pvt.Ltd	
2	Numerical Methods in Science and Engineering-Dr. Venkataraman, V Edn., (20	013)- The
	National Publishing Company	
3		
5	Introductory methods of Numerical Analysis - S. S. Sastry, 3rd Edn., Prentice H	Iall of India
5	Pvt.Ltd.	Iall of India
	Pvt.Ltd. Reference Books	
1	Pvt.Ltd.       Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th	
1	Pvt.Ltd.         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)	
	Pvt.Ltd.       Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th	
1 2	Pvt.Ltd.         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)         Numerical Analysis – Scheid, McGraw Hill International Book Company	
1 2	Pvt.Ltd.         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)         Numerical Analysis – Scheid, McGraw Hill International Book Company         Advanced Engineering Mathematics - E.Kreyzig, Wiley	nd Edition, Mc
1 2 3	Pvt.Ltd.         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)         Numerical Analysis – Scheid, McGraw Hill International Book Company         Advanced Engineering Mathematics - E.Kreyzig, Wiley         Web Resources	nd Edition, Mc
1 2 3 1 2	Pvt.Ltd.         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)         Numerical Analysis – Scheid, McGraw Hill International Book Company         Advanced Engineering Mathematics - E.Kreyzig, Wiley         Web Resources         Newton Raphson Method - YouTubehttps://www.youtube.com/watch?v=oE98V	nd Edition, Mc
1 2 3 1	Reference Books         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)         Numerical Analysis – Scheid, McGraw Hill International Book Company         Advanced Engineering Mathematics - E.Kreyzig, Wiley         Web Resources         Newton Raphson Method - YouTubehttps://www.youtube.com/watch?v=oE98V         Bisection Method - YouTubehttps://www.youtube.com/watch?v=XPUsRgaMsU         Euler's Method   MIT 18.03SC Differential Equations, Fall 2011        https://www.youtube.com/watch?v=X5-ucBtneVM	nd Edition, Mc
1 2 3 1 2	Pvt.Ltd.         Reference Books         Numerical methods with Programs in C , T. Veerarajan, T.Ramachandran, 2 th Graw Hill (2015)         Numerical Analysis – Scheid, McGraw Hill International Book Company         Advanced Engineering Mathematics - E.Kreyzig, Wiley         Web Resources         Newton Raphson Method - YouTubehttps://www.youtube.com/watch?v=oE98V         Bisection Method - YouTubehttps://www.youtube.com/watch?v=XPUsRgaMsU         Euler's Method   MIT 18.03SC Differential Equations, Fall 2011	nd Edition, Mc

		MA	PPING WITH			COMES								
Strongly C	orrelated - 3		Moderately	y Correlate	W	eakly Cori	related – 1	L						
		РО												
CO / PO	1 Disciplinar y Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa l and internat ional perspec tive	10 Lifelon g learner				
CO1	3	1	1	1	-	-	2	1	1	1				
CO2	3	1	1	-	-	-	2	1	1	1				
CO3	3	1	1	1	-	-	2	1	-	1				
CO4	3		2	1	-	-	2	1	2	2				
CO5	3	1	3	1	1	-	2	2	2	2				
AVG	3	1	2	1	-	-	2	1	1	1				
TOTAL	15	4	8	4	1	-	10	6	6	7				

			S	SECO	OND	YEA	AR - SEMES	FER – III			
				QU	ANT	CUM	MECHAN	ICS – II			
Cours	e	Category					Credits	Inst.		Marks	
Code		Core/Ele/Sec	L	Τ	Р	S		Hours	CIA	ESE	Total
24PPYC	C <b>07</b>	Core -VII	5	-	-	1	5	6	25	75	100
101	<b>T</b>	• • • • •		• • 1			ng Objectiv		•	11 1 .	1
L01		course is targeted t								d helps to a	ppreciate the
LO2		of quantum mechaning the origin of								ne the conc	pent of field
LUZ		the way to analyze							inc system	is, the conc	ept of field
LO3		theory of time dep							approxima	ations to an	alvze manv
		tron systems are di									
LINIT		¥					•	17		No. o	f Hours
UNIT					COL	ntent	.S				
I	total amp appr theory	t I: Scattering theo cross - section - litude - scatterin oximation and its rem - partial wave low energy scatter	wa g am validi e ana ring	ve m plitu ty - lysis · sca	necha de i sca - p	anica n te atteri ohase	al picture of rms of Gree ng by Yukay e shifts - s	scattering - son's function wa potentials scattering am	scattering - Born - optical plitude -		18
п	trans - tra adial	t <b>II: Evolution wi</b> Time dependent sition under constant unsition probability batic and sudden ap om with quantized	nt pe nt per y - F oprox	rturb rturb ermi imat	ation <b>- (</b> ion	n - p Gold - S	physical inter en rule- har emi classical	pretation of monic pertu treatment: in	the curve irbation - interaction		18
III	curre parti exist	t III: Relativistic The Klein - Go ent densities - I cle solution of Di tence of electron sp triance - properties	ordon Dirac rac e pin -	equ equa quati cova	ation ation ion - rian	n <b>-</b> p -mat ne t for	trices and the gative energ m of Dirac e	eir propertie y states of ₁	s - free positron -		16
IV	Eule and seco	t <b>IV: Classical fie</b> Classical fields or Lagrange equation complex scalar fields nd quantization - ntization of K.G eq	s-cano ons - elds - qu	Ham - cr antiz	iltor eatio	nian on, c	formulation lestruction a	- quantization - quantization	on of real operators-		20
V	Unit Tho meth	t V: Atomic and Approximation	mole in at tistica nd th	cula omic al mo eory	e stru odel - H t sep	uctur - H eitle	e -central f lartree - Foo r - Londor	ckself consis n theory of	stent field		18 90

	Construction Contraction	IZ I 1
CO	Course Outcomes	K Level
<u>CO</u> CO1	On completion of this course, students will Define scattering terminology from the quantum perspective, distinguish it from classical view point, understand the relation, disclose two main methods of approximation applied to low energy scattering, apply and analyse the method to basic potentials, perceive its applications. [Assignment on Born Approximation with INFLIBNET material: PO8,9]	K1,K2,K3,K4
CO2	Answer with inference to the questions, Why do we need time dependent perturbation and other approximation theory? Where and how are they applied, apply them and understand the physics of practical importance, interpret the results arrived theoretically, analyse to deduce the relation among Einstein's coefficients.[e-quiz on Perturbation theory][PO4]	K1,K2,K3 ,K4 , K5
CO3	Recall the basic Schrodinger wave equation and its difficulty, extend it to relativistic quantum mechanics through the KG equation, understand Dirac equation, solve it, appreciate, analyse its solution, perceive the concept of negative energy states, evaluate the properties of Dirac matrices and gamma matrices and understand covariance through four vector form of Dirac equation. Team work on i. Construction of Dirac equation ii. Evaluation the properties of Dirac matrices iii. Gamma matrices with its properties and iv. Four- vector formulation of Dirac equation as a written assignment to four teams. A question session through PPT at the end of the interactive seminar to invoke further learning and discussions is encouraged. (K5, K6) [PO2, PO3, PO7, PO10]	K1,K2,K3,K4,K5,K6
CO4	Get introduced to the concept of classical fields:https://nptel.ac.in/courses/115/106/115106065/ (GD) formulate Lagrangian density, Hamiltonian density, relate them with the need for second quantization, categorize real and complex fields, infer the motive for operators in the process of second quantization, utilize them to second quantize Schrodinger equation and KG equation. https://nptel.ac.in/courses/115/101/115101117/ (Discussions) (PO2, PO5)	K1,K2,K3,K4
CO5	Recall many electron systems and understand the inadequacy of methods to solve them, elaborately discuss the Valence band theory, Heitler – London theory of hydrogen molecule, apply it to understand the doublet separation in alkali atoms, statistical theory of Thomas – Fermi and Hartree – Fock method of self-consistent field.	K1,K2,K4,K6
	Text Books	
l	Quantum Mechanics. L. Schiff - Tata McGraw Hill, New Delhi, 1968.	
2	Quantum Mechanics. Gupta, Kumar and Sharma - Jai Prakash Nath and Co,	
3	Quantum mechanics. Sathya Prakash -Kedar Nath, Ram Nath and Co. Public	cations.
	Reference Books	
1	Quantum Mechanics. V. K. Thankappan - Wiley - Eastern, New Delhi, 1	985.
2	Quantum Mechanics - A.K. Ghatak and S. Loganathan -McMillan India, 3rd	edition
3		House, New Delhi -
	Web Resources	

1	staff.ustc.edu.cn/~yuanzs/teaching/Fermi-Golden-Rule-No-II.pdf
2	https://en.wikipedia.org/wiki/Klein-Gordon_equation
3	www.philiphofmann.net/book_material/notes/heitlerlondon2.pdf
4	https://en.wikipedia.org/wiki/Gamma_matrices
5	http://www.nscl.msu.edu/~pratt/phy851/lectures/lectures.html

			MA	PPING W	ITH PROC	GRAM OU	<b>FCOMES</b>			
	Strongly Co	rrelated - 3	3	Modera	ately Corre	lated - 2		Wea	akly Correlated	l-1
					РО					
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manager	7 Digitally Efficient	8 Ethical awareness/ reasoning	9 National and international perspective	10 Lifelong learners
C01	3	1	2	-	-	-	2	2	1	1
CO2	3	1	2	1	-	-	2	1	-	
CO3	3	2	2	1	2	1	3	1		
CO4	3	2	2	-	2	1	1	1	2	1
CO5	3	1	2	-	-	-	1	1		1
AVG	3	1	2	1	1	1	2	1	1	1
TOTAL	15	7	10	2	4	2	9	6	3	3

				SEC	ON	D YEA	R - SEMESTE	ER – III			
				Ε	LEC	CTRON	MAGNETIC T	HEORY			
Course Code		Category Core/Ele /Sec						Total			
24PPYC	08 C	Core - VIII	5	-	-	1	5	6	25	75	100
							ing Objectives				
L01		aim of this ctrics and bo					the different constants	oncepts of e	lectrostati	cs, magne	tostatics
LO2	To pr	ovide an ins	sight i	nto c	class	ical ele	ectrodynamics b	ased on Max	xwell's eq	uations	
LO3		derstand the		-	-	propaga	tion characteris	tics of electr	romagneti	c waves a	nd
UNIT						(	Contents				No. of Hours
Ι	Electr symm – Equ an ele - Met groun	netric charge ii potential s ectrostatic fi hod of elect ided, insulat	e distr surfac eld- 1 trical ted, ar	ibuti es- 1 Poiss imag nd w	ion– nulti son's ges – hen s	Electri ipole ez equati A poin sphere	n Application of c field and potes xpansion of elect on - Laplace ent t charge in from is charged and i	ntial of a dip ctric field equation - U at of a condu	oole and Q Energy c niqueness	Quadruple lensity of s theorem	20
II	Biot-S Equiv Loren Polari dielec distril	valence of a ntz condition isability-, die ctric constant bution in th	w-Am small on-Die electri at - Bo ne pres	ipere curr elect ic co ounda sence	e's l rent l rics- nstai ary c e of	aw in oop and Polaris nt and c onditio dielect	circuital form d a magnetic dip ation - Diffe displacement ve ons on field vecto rics - dielectr -Mossotti relatio	bole-Magnet erent types ctor -electric ors - potenti ric sphere in	ic vector j of Polar c suscepti al energy	potential- isation - bility and of charge	20
ш	Maxy Equat signif Poynt in ter	well's Equa tion of cont ficance-Integ ting,vector -	tinuity gral f Elect	y - I form trom	Displ – l agne c pot	lacement Electron etic vec tentials	nt current - Ma magnetic energ tor and scalar po - Non - Non-	axwell's Eq yy and Poys otentials - M	nting's th axwell's	eorem –	15
IV	Refle equat Intera and	ions- Wave action of EN Fransverse guides Ra	action equa A way magn	tion- ves w etic(	EM Evith 1 (TM)	I wave matter ) mode	ditions at the sur s in free space, - Wave guides e -propagation illating electric o	and in cor Transverse of EM way	nducting i electric n ves in re	nedium - node(TE) ctangular	20
V	Relat Mink	t <b>ivistic Elec</b> owski space	e - In	varia	ince		Alembertian op ur vector form -				

	current densities - Equation of continuity in covariant formTransformation of					
	electromagnetic potentials – Lorentz condition in covariant form - Invariance of	15				
	Maxwell's field equations in terms of four vectors.					
	Total	90				
Course Outcomes						
CO	On completion of this course, students will	Level				
CO1	<b>Understand</b> and explain the fundamentals of the behavior of electric fields and to	K1				
001	solve the Laplace equation, Apply theoretical knowledge of principles and	K1 K2				
	mathematical concepts to practical problems ( <b>PO3</b> ), E– Quiz on solving problems	K2 K3				
	in GCR ( <b>PO</b> 4)	113				
CO2	<b>Recall</b> the basic laws in magnetic fields to <b>explain</b> boundary conditions and to find	K1				
	various parameters for <b>solving</b> the problems, To enhance the research skill, make	K2				
	them to <b>analyze</b> the materials related to dielectric properties ( <b>PO</b> 3), Seminar with	K3				
	group discussion to promote their basic knowledge through PPT ( <b>PO</b> 2).	K4				
CO3	<b>Define the</b> new formalism of Maxwell's equation with the modification in the	K1				
	equations of electricity and magnetism for time-varying fields. <b>Rephrase</b> the law	K2				
	of conservation of energy, as Poynting theorem. Develop electromagnetic	K3				
	potentials, and <b>Analyze</b> electrodynamics involving changing electromagnetic fields	K4				
	with gauge invariance and non-uniqueness of electromagnetic					
	potential.https:// nptel.ac.in/courses/115/104/115104088/					
	[PO2,PO3,PO4,PO7,PO8,PO9]					
CO4	Illustrate Electromagnetic waves being transverse in nature. Demonstrate	K1				
	properties of reflection, refraction and polarization in terms of Fresnel's equations.	K2				
	Distinguish and solve wave equation for propagation of electromagnetic waves in	K4				
	vacuum, non-conducting isotropic dielectric medium and linear isotropic	K5				
	conducting medium. <u>https://nptel.ac.in/courses/115/104/115104088/</u> .Formulate	K6				
	the propagation of electromagnetic waves through rectangular waveguides.					
	Estimate radiative power from an oscillating electric					
	dipole.https://nptel.ac.in/courses/115/104/115104088(discussions)https://epgp.infl					
	ibnet.ac.in/Home/ViewSubject?catid=28.Group discussion about different modes					
	of propagation through rectangular wave guides in TE and TM					
<u> </u>	modes.[K6,PO2,PO3,PO5,PO6]	17.1				
C05	<b>Recall</b> basic relativistic concepts. <b>Develop</b> four vectors and <b>demonstrate</b>	K1				
	Minkowski's four dimensional vector space. <b>Interpret</b> Lorentz transformation	K2				
	equations, charge and current densities in four vector form. <b>Perceive</b> the knowledge	K3				
	of four vectors form to <b>justify</b> invariance of equation of continuity, electromagnetic	K4 K5				
	potentials and Maxwell's equations. Assignment on Minkowski's four dimensional vector space and its implications in the various physical phenomena with	кJ				
	INFLIBNET material. <u>http://epgp.inflibnet.ac.in/Home/ViewSubject?catid=28</u> .					
	[K5,P08,P09,P010]					
	Text Books					
1	Electromagnetic theory and electrodynamics, Sathya Prakash, KedarnathRamnath	and Co				
1	Meerut					
2	Electrodynamics, Gupta, Kumar and Singh, S.Chand and Co, New Delhi .					
3	Electrodynamics, Chopra and Agarwal K.Nath and Co, Meerut					
	Reference Books					
1	Classical Electrodynamics, J.D.Jackson and John Willey (1962), New york.					
2	Introduction to special theory of relativity – Robert Resnick, Wiley Eastern Ltd, I Edn					

3	Foundations of Electromagnetic Theory – J.R Reitz, F.J, Milford and R.W. Christry, Narosa, III Edn, New Delhi, 1998.
	Web Resources
1	http://www.plasma.uu.se/CED/Book/index.html
2	http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html
3	http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html
4	http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tutorials/
5	https://www.cpp.edu/~pbsiegel/supnotes/nts1331.pdf

			MA	PPING WI	TH PROG	RAM OUT	COMES									
	Strongly Co	orrelated - 3		Modera	tely Corre	lated - 2		Weakly Correlated – 1								
		PO														
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Communic ator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manager	7 Digitall y Efficien t	8 Ethical awareness/ reasoning	9 National and international perspective	10 Lifelong learners						
CO1	3	1	2	2	-	-	2	1	1	1						
CO2	3	2	1	1	-	-	2	1	1	1						
CO3	3	1	2	1	-	-	1	1	1	1						
CO4	3	2	1	2	2	1	2	1	3	2						
CO5	3	2	2	1	1	-	1	1	1	1						
AVG	3	2	2	1	1	-	2	1	1	1						
TOTAL	15	8	8	7	3	1	8	5	7	6						

			S	ECO	ND Y	<b>EA</b>	R - SEMESTI	ER – III			
			PR	RAC	TICA	LS	III - GENEI	RAL - II			
Course Code 24PPYC09		Category Core/Ele/Sec	L	Т	Р	S	Credits	Inst. Hours	CIA	Marks ESE	Total
		CORE - IX	-	6	-	-	5	6	25	75	100
LO1							g Objectives				
	To	1.1.1.1	.1								
LO2		train the students, or ervations appropriat		ndlir	ig the	inst	truments, accu	urate measur	ement, and	d tabulatin	g the
LO3	То	encourage the stude	nts t	roub	lesho	ot tl	ne problems in	n terms of ha	andling an	d calculati	on
UNIT					Co	nter	nts			No. o	f Hours
	CO	01									
	1.W inte		18								
Ι	2.T										
	3.S										
	4.Sj										
	CO	02									
II	5.T		18								
	6.T										
	7.H										
	CO	03									
	8. S										
III	9. S		18								
	10.	Compressibility in	liqui	ds-U	Itrasc	onic	interferomete	er.			
	11.	Ultrasonic diffraction	on-R	Fos	cillate	or.					
	CO	94									
IV	12.	G. M. Counter- Cha	aract	erist	ics.						
	13.	G. M. Counter- Abs	sorpt	ion	coeffi	cier	nt- maximum	range of $\beta$ ra	ays.		18
	14.	Specific charge- Th	ioms	on n	netho	d.					
	15.	Dielectric constant	of a	liqui	id.						

	16. Solar constant- Lee's Disc method.	
	CO5	
v	17. Solar Cell-characteristics and efficiency.	
	18. Coefficient of thermal expansion-Air wedge method.	18
	19. Mutual Inductance-Carey Faster's bridge.	
	20. Scilab-Simple experiments (Demonstration).	
	Total	90
	Course Outcomes	K Level
СО	On completion of this course, students will	
	<b>Recall</b> the properties of EM waves, <b>Define</b> spectrum, <b>summarize</b> the laws of	K1,K2,K3,
	reflection and refraction, identify the applications of optical instruments,	K4,K5
CO1	inspect the working, tabulate the observations, determine the parameters,	
COI	discuss the result, maximize the accuracy and minimize the error.	
	Demonstrate FTIR and UV instrumentation and understand Analyze the spectra. (PO2,3,4,5,6,7)	
	<b>Define</b> Hall effect, <b>compare</b> ordinary and LASER lights, <b>illustrate</b> EB	K1,K2 ,K4, K5
~ ~ ~	fringes, <b>examine</b> the thickness of the wire due to LASER and Air wedge setup,	111,112,111,113
CO2	estimate Hall constants and calculate the thickness of L.G plate using	
	spectrometer. (PO2,3,4,5,6,7)	
	Recall the working principle of interferometer, define magnetic susceptibility,	K1,K2,K3,K5,K
	<b>make use</b> of Guoy balance and Quincke's set up to <b>determine</b> susceptibility and	6
CO3	compare the results, analyze and interpret the ultrasonic diffraction pattern.	
	Use	
	ultrasonic interferometer to estimate the compressibility in a mixture of liquids, using RF oscillator of frequency 2MHz. (PO2,3,4,5,6,7)	
	<b>Define</b> radioactivity and <b>Recollect</b> information regarding the sources of $\alpha$ , $\beta$	K1,K2
	and y	K3,K4
CO4	radiation, <b>Summarize</b> the properties of electrons, what is called specific	
001	charge?	
	Explain dielectric constant of materials, use origin software to draw graphs. (PO2,3,4,5,6,7)	
	List the uses of the solar energy, construct solar cell, illustrate the	K1,K2,K3,K4
	characteristics	
CO5	of solar cells, demonstrate Scilab experiments, Explain Coefficient of	
	thermal expansion, <b>discuss</b> the <b>theory</b> of Carey Faster's bridge and <b>determine</b> mutual	
	inductance ( <b>PO2,3,4,5,6,7</b> )	
	Inductance (1 04,0,7,0,0,1 )	

			MAPP	ING WITH I	PROGRA	M OUTCO	MES								
5	Strongly Corre	elated - 3		Moderately (	Correlate	d - 2		Weakly Correlated – 1							
		PO													
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commun icator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player /worke r	6 Skilled project manager	7 Digitally Efficient	8 Ethical awareness/ reasoning	9 National and internati onal perspecti ve	10 Lifelong learners					
CO1	3	2	3	2	2	1	2	1	1	1					
CO2	3	1	3	1	2	1	3	1	1	1					
CO3	3	2	2	2	2	1	2	1	1	1					
CO4	3	1	2	1	2	1	2	1	1	1					
CO5	3	1	1	2	1		2	1	1	1					
AVG	3	1	2	2	2	1	2	1	1	1					
TOTAL	15	7	11	8	9	4	11	5	5	5					

				SEC	ON	DY	EAR - SEM	ESTER – III				
			(	CON	DE	NS	ED MATTE	ER PHYSICS				
Cours	P	Category					Credits	Inst. Hours		Mark	8	
Code		Core/Ele/Sec	L	Τ	Р	S			CIA	ESE	Total	
<b>24PPYC</b>	C10	Core - X	5	-	-	1	5	6	25	75	100	
					Ι	Lea	rning Objec	ctives				
LO1	To	understand the free	e elec	tron	theo	ory	quantum me	echanically and lea	arn its app	olications.		
LO2	То	learn about band th	heory	v. its	und	erl	ving theoreti	cal development f	for its suc	cessful ex	planation of	
202	To learn about band theory, its underlying theoretical development for its successful explanation of certain properties and phenomena of solid states.											
LO3	To acquire knowledge about different magnetic materials and superconductors.											
	10	acquire kilo wreage	uoo	at ui				actions and supere				
UNIT							Contents				No. of Hours	
	Lat	tico Vibrations									nours	
	<b>Lattice Vibrations</b> Vibrations of one dimensional monoatomic and diatomic linear lattice – the Brillouin											
		e –Normal modes (										
Ι	con	ductivity – inelast	ic sc	atter	ing	of	photons and	l neutrons by pho	onons - U	mklapp	15	
1		cess.										
	Debye's model of lattice heat capacity - modes - The Debye approximations -											
		itations of the Deb	ye m	odel	•							
	<b>Free electron theory</b> Somerfield's Quantum theory - Free electron gas in one dimensional potential well–											
II		e electron gas in th		•			U		-		15	
		istics - Applicatio									-	
		amagnetism of free		tron	s.					_		
		nd theory of solids										
		ch theorem and p										
III	acceleration and the effective mass of an electron – Tight binding Approximation -											
111	Concept of Fermi surface - characteristics of Fermi surface -Distinction between metals, insulators and semiconductors – Energy band diagram and Fermi level – Hall											
	effect.											
	-	perconductivity										
	-	erconductivity - ł			-			1		1.		
IV		cific heat - Therr									15	
	-	erconductors - Lo alitative) - Flux qu		-						-	15	
		olications of Su										
		perfluidity.	P • • •				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ingi temp	o op er e orre			
	Ma	gnetic Properties										
	~	antum theory of Fe		<u> </u>				•		0	15	
V		gnon dispersion r										
		lecular theory of A rite:MgAl ₂ O ₄ - Cur										
		Ferrite.		nper	atul	u a	na susceptio	inty of terrinaghe	w - uhhi	100115		
						_	Total				75	
	1						outcomes				K Level	
CO	On	completion of this	cour	se, s	tude	nts	will					

	Understand the vibrations of one dimensional monoatomic and diatomic linear	K1					
	lattice, <u>https://www.youtube.com/watch?v=sQtQAGNm3BA</u> IIlustrate the	K2					
	Brillouin zone and normal modes of vibrations ,Define phonons ,momentum of	K3					
CO1	phonons, how it contributes to lattice thermal conductivity, Explain inelastic scattering	K4					
	of photons and neutrons by phonons and Umklapp process, Analyse Debye's model of						
	lattice heat capacity (Interactive seminars and discussions are encouraged. [PO3,						
	PO7, PO10].						
	Justify the failure of classical model and need for Somerfield's Quantum theory,	K1					
	explain free electron gas in one dimensional potential well, extend it to three	K2					
~ ~ •	dimensions and deduce density of states, RecallFermi – Dirac statistics and Fermi	K3					
CO2	energy, Apply to free electron gas model, examine the properties likeElectronic	K5					
	specific heat andspin paramagnetism of free electrons. [Assignment on Sommerfield						
	atom model with INFLIBNET material: PO7,PO8,09]						
	State and prove Bloch theorem , apply it to Kronig - Penny model to explain electron	K1					
003	energy bands, <u>https://www.youtube.com/watch?v=IJJ-JtvJ5uM</u>	K1 K2					
	<b>deduce</b> velocity, acceleration and the effective mass of an electron, <b>perceive</b> the	K2 K3					
CO3	concept of Tight binding Approximation , understand fermi surface fermi level to	K3 K4					
		<b>N</b> 4					
	Distinguish between metals, insulators and semiconductors, describe Hall effect.						
	Online quizzes on basic concepts of different approximations( PO7)	V 1					
	<b>Recall the</b> basic concepts of Superconductivity, <b>apply</b> thermodynamics to superconducting transition to explain Meissner effect, isotope effect, entropy <b>and</b>	K1 K2					
	specific heat, <b>classify</b> Type-I, Type-II superconductors – <b>deduce</b> London equations	K3					
<b>CO4</b>	,explain BCS Theory ,discuss AC and DC Josephson effect, phenomena of Flux	K4					
	quantization and Quantum tunneling, of Superconductors – understand the need	K6					
	forhigh temp Superconductors, appreciate their Applications. Theoretically analyse						
	and suggest new combination of materials which can act as high temperature						
	superconductors.(K6)	T7 1					
	Understand the need for Quantum theory of Ferromagnetism, extend it to perceive the	K1					
	concept of Weiss field, define Magnons ,deduce Magnon dispersion relation ,discuss	K2					
	Domain theory of Ferromagnetism and Bloch wall, elaborate Molecular theory of	K5					
CO5	Antiferromagnetism and Ferrimagnetism distinguish between Neel temp and Curie						
COS	temperature ,Describe the Structure of Ferrites and their Applications. Group						
	discussions, individual Seminar through ppts and assignments can be given on						
	the theories underlying different magnetic materials to enhance their further						
	learning.( (PO2,PO5,PO6,PO7)						
	Text Books						
1	Solid state physics, R.K.Puri and V.K.Babbar, third edition, S.Chand and company Lt	d.(2005) (All					
1	Units)						
2	Solid State Physics – S.O.Pillai, New Age International, New Delhi, 1997. (All Units)						
3	Solid State Physics - S.L.Gupta and V.Kumar. K.Nath andCo,Meerut. (All Units)						
5							
1	Reference Books						
1	Introduction to Solid State Physics - C. Kittel - Wiley Eastern - New Delhi						
2	Solid State Physics Rita John, McGraw Hill, New Delhi, 2014.						
3	Solid State Physics - A.J. Dekker - Macmillan India						
	Web Resources						
1	Lecture 5: Reciprocal lattice II, Brillouin zone and Bragg s, nptelnptel.ac.in/courses/l	13104012/5					
2	Debye Theory of Specific Heat, Lattice Vibrations – Work	ed., -					
<u>ک</u>	nptelnptel.ac.in/courses/115106061/21						

3	Magnetic properties – nptel nptel.ac.in/courses/112108150/pdf/PPTs/MTS_16_m.pdf
4	https://ocw.mit.edu/courses//lecture-notes/MIT2_57S12_lec_notes_2004.pdf kronig penney
5	web.mit.edu/8.13/www/JLExperiments/JLExp39.pdf superconductivity

	Strongly Correla	ated - 3	Mo	derately Co	orrelated		Weakly	Correlated -	1						
		РО													
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Communica tor	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awarenes s/ reasoning	9 National and internation al perspective	10 Lifelong learners					
CO1	3	2	2	1	1		1	1	1	1					
CO2	3	2	1	2	1		1	2	1	1					
CO3	3	1	2	1	1		2	1	1						
CO4	3	1	1	1	1		1	1		2					
CO5	3	2	2	1	2	1	2	1	1						
AVG	3	2	2	1	1		1	1	1	1					
TOTAL	15	8	8	5	6	1	7	6	4	4					

		SE	CO	ND Y	YEA	R - SEMEST	ER – III			
		PHY	SICS	5 OI	FBI	OLOGICAL S	SYSTEMS			
Course Code	Category Core/Ele/Sec			Р	s	Credits	Inst. Hours	CIA	Marks ESE	Total
24PPYG2	A GE - II	4	-	-	1	3	5	25	75	100
LO1 LO2	that governs the structure, organization and functioning of living system									
LO3	<ul> <li>physics which enabout body</li> <li>To delve deep into a which play an impeof physics in medic.</li> </ul>	const rativ	ruct	ion a	and	physics behin	d the worki	ng of vari	ous diagn	ostic tools
UNIT				(	Con	tents			No.	of Hours
Ι	<ul> <li>Waves and Wave Motion</li> <li>Sources of waves-wave motion-types of waves: mechanical waves - Compression and rarefactions, electromagnetic waves - Transverse and longitudinal waves. Amplitude, phase, frequency of a wave-Qualitative treatment only.</li> <li>Sources of sound, characteristics of sound - pitch, intensity, volume fundamentals and harmonics. Relation between frequency, wavelength and speed (expression only).</li> <li>Human ear-Parts-functioning. Frequency and pitch, intensity and loudness-sensitivity of human ear-threshold of hearing and threshold of pain. Hearing in Bats - echoes.</li> <li>Application: Stethoscope-construction and working.</li> </ul>								nd ve th	15
Π	Fluid Mechanics         Pressure and thrust-definition. Equation of continuity. Bernoulli's theorem-statement and explanation of the terms. Viscosity-definition. Streamline and turbulent flow of a fluid. Poiseulle's law (qualitative treatment).         Applications: Circulation of blood-parts and functioning of human heart - heart attack- Blood pressure - effects of changes in blood pressure in body. Measurement of blood pressure.									15

	HEAT		
III	Heat capacity-specific heat capacity and latent heat- definition, units and dimensions. Propagation of heat -conduction, convection, radiation.		
	Applications - warm and cold-blooded animals, regulation of body temperature in warm-blooded animals, control of skin temperature, withstanding cold temperatures. Aestivation and hibernation. Heating by the sun through radiation, evaporation-cooling of skin by secretion of sweat.	15	
	OPTICS		
IV	Dual nature of light-wave and particle nature. Lenses-Refraction through lenses, types of lenses -convex and concave lens - curvature, principal focus, focal length. (qualitative). Power of a lens-definition and unit. Refractive index of a material (definition)	15	
	Human eye - structure of the eye. Eye as a camera. Lens system of the eye. Defects in vision-myopia, hyperopia and astigmatism-correction using external lens (qualitative treatment only)		
	Applications - Contact lens, confocal microscopy		
	MEDICAL PHYSICS-DIAGNOSTIC INSTRUMENTS		
V	Basic medical instrumentation system. X-rays - properties. X-ray diagnostics and imaging. X-ray computed tomography, ECG, EEG - basic principle, block diagram and working. Ultrasound imaging, diathermy, lithotripsy.	15	
	Total	75	
	Course Outcomes	K Level	
CO	On completion of this course, students willUnderstand the physical aspects of waves, and define important terms		
CO1	involved in describing wave motion. <b>Understand</b> the structure of ear and <b>apply</b> wave concept to process of hearing. Assignment on hearing in animals and threshold of hearing and pain for different sounds.	K1,K2,K3,K5	
	<b>Relate</b> the concepts of viscosity and surface tension to the functioning of		
CO2	heart. Understand the concepts of turbulence, streamline motion as applied to circulation in human body. Examine the effects of blood pressure fluctuations in various parts of the body. Group discussion, on	K1,K2,K3, K5, K6	
	latest advances in treatments for cardiac problems, and the physics behind the instruments.		
CO3		K1 K2 K3 K4	

	-									
<b>CO4</b>	<ul><li>Define the different terms that help understand working of lens system.</li><li>Understand how human eye works like a camera. Discuss the defects of the eye. Assignment on structure and function of different parts of the eye.</li></ul>	K1 K2 K4 K5								
CO5	CO5 List the different diagnostic tools used in medicine. Explain their principle, construction and working. Seminar on tools used in therapy. Group discussion, PPT on physics principles behind the working of the diagnostic tools.									
	Text Books									
1	A Textbook of Sound, N. Subramaniam and Brijlal, S. Chand & Co, New Revised Edition, 2021.	Delhi, II								
2	Physics in Biology and Medicine, Paul Davidovits, Hardcourt Academic Press, 2001.									
3	3 Biomedical Instrumentation, M. Arumugam, Anuradha Publishing Co., Kumbakkonam, TamilNadu, 2004.									
	Reference Books									
1	Handbook of Biomedical Instrumentation R S Khandpur Tata McGraw Company Ltd. 2003.	Hill Publishing								
2	Jacobson and Webster, Medicine and clinical Engineering, Prentice Hal Delhi, 1979.	l of India, New								
3	Richard Aston, Principles of Biomedical Instrumentation and measuremen Publishing Co., London, 1990	t, Merrill								
	Web Resources									
1	https://www.physicsclassroom.com/class/sound/u1111c.cfm									
2	https://www.britannica.com/science/ear/Anatomy-of-the-human-ear									
3	https://www.khanacademy.org/science/physics/mechanical-waves-and-sou waves/v/introduction-to-waves	nd/mechanical-								
4	https://www.slideshare.net/slideshow/eeg-electroencepalogram/235064630	)#13								
5	https://www.slideshare.net/slideshow/ecg-machine-10693963/10693963#7									

	MAPPING WITH PROGRAM OUTCOMES												
	Strongly Correlat	ted - 3	Moderate	ely Correla	ted - 2		Weakly Correlated – 1						
	РО												
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Communicator	3     4     5       Critical     Sense     Team       thinker and     of     player/       problem     inquiry     worker       solver			6 Skilled project manager	78Digitall yEthical awarenessyEfficien ttreasoning		9 National and international perspective	10 Lifelong learners			
CO1	3	1	1	-	-	-	1	2	1	1			
CO2	3	1	1	-	-	-	1	1	1	1			
CO3	3	2	1	1	1	-	2	1	1	1			
CO4	3	1	1	1	-	-	1	1	2	1			
CO5	3	2	1	1		-	2	1	-	1			
AVG	3	1	1	1	1	-	2	1	1	1			
TOTAL	15	7	5	3	1	-	8	6	5	5			

			SE	CON	D Y	EAR - SEME	STER – III				
			ME	DIC	AL ]	INSTRUME	NTATION				
Course Code	Category Core/Ele/ Sec	L	Т	Р	S	Credits	Inst. Hours/ Week	CIA	-	arks SE	Total
24PPYG2B	GE - II	4	-	-	1	3	5	25	7	5	100
	02 11	-				ning Object	-			-	200
L01	To learn the b	pasics	of N				he origin and c	haracterist	ics of	bio-s	ignal and
	the basics of										
LO2		es of e	lectr	odes	s used	d for the proc	ess of bio-pote	ential and t	he tra	nsduc	ers for the
	analysis										
1.02	Recording an							• • 1	•	<u> </u>	. <u>,</u> .
LO3	Principle and working of biomedical instruments and the imaging techniques for diagnostics. The physiological assist devices and the working of different imaging instruments										
	The physiolog	gical a	ISSIS	laev	ices	and the work	ing of differen	it imaging i	Instru		
UNIT					(	Contents				No.	of Hours
	Physiologica	l Svst	em a	nd I	Medi	ical Instrum	entation				
	<b>Physiological System and Medical Instrumentation</b> Bio-signal and its characteristics -Transport of ions through cell membrane										
Ι	- Resting and action potentials - Bio-electric potentials - Design of									15	
1				n sy	stem	- Static and	dynamic char	racteristics	of		
	medical instruments										
	Bio-Potential Electrodes and Physiological Transducers										
	Electrode potential - Types of Electrodes – Surface, Needle and Micro										1 7
II	electrodes – Chemical electrodes - Pressure transducers – Magnetic induction type transducers - Piezoelectric type transducer- transducer for										15
	body tempera					oelectric type	e transducer- ti				
	Bio-Potentia				ient.						
					ding	system - Ele	ctrical activity	of the heat	art-		
	Characteristics of the recording system - Electrical activity of the heart- Electrocardiogram - Block diagram of electrocardiograph and recording									15	
III	system – ECG amplifier - Electroencephalography (EEG) – Action										15
	potential of the brain and brain waves - EEG leads - Recording set up of										
	EEG and analysis										
	Bio-Medical				•			т			
IV							y and Fluoros asonic Dopple				15
I V	meter - Blood	-					asome Dopple	. 0100u 11	Uw		
	Physiologica	<u> </u>					echniques				
							icial heart va	lves – La	ser		
V							doscopes – Nu				15
							gnetic Resona				15
	(MRI)										
						Total					75
			Со	irse	Ont	Total comes				K	/5 Level
СО	On completion	n of th								17	
	<b>Recall</b> the						brane, bio	signals a	and		K1
CO1	classifyPoten							-	nd		K2

		TZ A
	dynamic characteristics of medical instrumentation and choose the	K4
	instrument for particular characterization, Encourage the students to visit	K5
	various labs for develop their skills and interpret the results ( <b>PO6 &amp;PO8</b> ), [Seminar with question session with e-resources) ( <b>PO2, PO4, PO7, PO9</b> ).	K6
	Select the instruments with electrodes and Develop their knowledge in	K1
	understanding the various electrodes in instruments and explain the	K2
	working of it, analyze the usage various of transducers and identify to	K3
CO2	make use of it, Be adapt in the usage of techniques, skills and modern tools	K4
	for sustained professional development (PO4). Learn Transducer:	
	https://byjus.com/physics/transducer/,	
	https://www.youtube.com/watch?v=w4GCDX8iOuA (PO7, PO3, PO9)	
	Define Recording System, CompareEEG and ECG Recording Systems,	K1
CO3	Applications of EEG and ECG used for various measurement of physical	K2
COS	quantities., Analyzing the waveforms of ECG by visiting bio instrument	K3
	labs https://www.goodrx.com/health-topic/heart/doctor-decoded-ecg-vs-	K5
	eeg (PO5, PO7, PO9) (PO3, PO4)	
	Application of X- ray Radiography, Radiography and Fluoroscopy - Image	K1
	intensifiers - Angiography ,) Ultrasonic Doppler blood flow meter - Blood	K3
CO4	pressure measurement where they are used? Analyze their uses.	K5
	https://www.ahajournals.org/doi/full/10.1161/01.str.31.6.1342 (PO3,	K6
	PO4)	
	Pacemakers - types and operation – Artificial heart valves – Laser Medicine	K1
	– instrumentation and imaging – Endoscopes – Nuclear imaging techniques –	K2
~~~	Computer tomography – Magnetic Resonance Imaging (MRI)	K3
CO5	Recollect the instruments using heart instruments pacemakers and heart	K4
	valves, laser in medicine Illustrate the concept of imaging techniques MRI	
	CT, Analyzing the images of CT, MRI by visiting bio instrument labs.(GD) (PO3,PO4, PO5,PO9)	
	Text Books	
1	Biomedical Instrumentation, 6/e, Arumugam, M., Anuradha publications, 2	
2	Biomedical Instrumentation and Measurements, 2/e, Leslie Cromwell and	Weibell, F.J.,
	Pfeiffer, E.A., PHI, 1999	1 11/1 0000
3	Medical Instrumentation, Application and Design, John G. Webster, 3/E, Jo	ohn Wiley, 2009.
1	Reference Books	n
1	Hand-book of Biomedical Instrumentation, 2/e, R.S. Khandpur, TMH, 200	
2	Principle of Biomedical Instrumentation & Measurement, Richard Aston, 7	MH, London
_	1990	
3	Sudip Paul, Vinay Kumar Pandey, in Introduction to Biomedical Instrum	nentation and Its
5	Applications, 2022.	
	Web Resources	
1	https://www.pluxbiosignals.com/blogs/informative/what-are-biosignals-get	-started-here
2	https://www.fer.unizg.hr/_download/repository/01_2015_Biomedical_Instr	rumentation
Δ	Origin of bioelectric potentials.pdf	
3	https://www.techtarget.com/whatis/definition/transducer#:~:text=A%20	nsducer%20is%2
3	0an%20electronic,and%20pressure%20sensors%2C%20and%20antenna.	
4	https://www.mayoclinic.org/tests-procedures/blood-pressure-test/about/pac	-20393098

https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-
ct#:~:text=The%20term%20%E2%80%9Ccomputed%20tomography%2C%E2%80%9D,i
mages%2C%20or%20%E2%80%9Cslices.%E2%80%9D

		MA	PPING WITH	I PROGRA	AM OUTC	COMES							
Strongly Cor	related - 3		Moderately	y Correlate	ed - 2	Weakly Correlated – 1							
	РО												
CO/PO	12DisciplinarSkilledyCommuKnowledgenicatorand skills		3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 Nationa l and internat ional perspec tive	10 Lifelon g learner s			
C01	3	2	1	2	1	-	2	1	1	1			
CO2	3	1	2	2	1	-	2	1	1	1			
CO3	3	1	2	2	1	-	2	1	1	1			
CO4	3	1	2	2	1	-	2	1	1	1			
CO5	3	1	2	2	2	1	1	1	1	1			
AVG	3	1	2	2	1		2	1	1	1			
TOTAL	15	6	9	10	6	1	9	5	5	5			

			SI	ECO	ND	YEA	R - SEMES	TER – III			
		COMP	UTA	TIO	NAL	2 PH	YSICS II- C	C PROGRAM	IMING		
								Inst.		Marks	
Course	Code	Category Core/Ele/ Sec	L	Т	Р	S	Credits	Hours/ Week	CIA	ESE	Total
24PPY	S02	SEC - II	1	1	-	-	2	2	25	75	100
					Le	arni	ng Objectiv	es			
L01	To impart the knowledge of programming in C and provide platform to enhance studer skills required for advanced programming										
LO2	The a	im and objectiv	ve of t	he co	ourse	e on	Computation				
		students with 0						use these in s	olving sim	ple physics j	problems.
LO3	Write	algorithms flov	wchar	t and	prog	gram	is in C				
UNIT						(Contents				No. of Hours
	ELEN	MENTS OF C									
Ι		tance of C - B		ructu	are o	of C	program - Co	onstants, varia	ables and c	lata types -	5
•	-	tors and expres									
	CONTROL STATEMENTS										
п	Statements - Decision making and branching: ifelse- switch, goto- Decision making and looping: While, Do, for, Jump in loops									10	
	ARR	<u> </u>	D0, IC	1, Ju	mp i	11 100	b ps				
		s - One and tv	vo din	nensi	onal	arra	ys - Intialisii	ng two dimen	sional arra	ays - multi	
		sional arrays -				•		rrays and str	ings - Dec	claring and	5
III	readin	ig strings - Arit	hmeti	c ope	eratio	ons c	on characters				
		C TIONS ition of function	on	Dotu	rn v	ماييم	and their t	where Function	tion calls	Function	
IV		ration - Passing						• -		- Function	5
		Charts and Pr			14110		j i ussing su				
	Simple Programs in C: Temperature conversion - Arranging number in ascending and										
\mathbf{V}	descer	nding order - M					-				5
	1:45-							Newton's for	rward and	backward	
	untere	ence formula –	Simp	son's	5 1/3	and	$\frac{3/8 \text{ Rule} - \text{E}}{\text{Total}}$	uler method.			30
	1					-					50 K
				С	ours	e Oı	itcomes				Level
CO		mpletion of thi									
		stand the basic							-		K1
001	-	e program with		•					0		K2
CO1		statement. Ana (int, float, etc <u>h</u>	•	-	-					nt data	K4 K5
									<u>1 am 1872</u>		K5 K6
	https://youtu.be/6F8cTBbh_TI?si=Tq_HF51LQZ5K4Rv9 By using control statements to write effective C programs and will learn to make										K0 K1
CO2		ons using if-els									K2
002		or loops. Also u					-		terative op	erations.	K3
	https:/	//youtu.be/kfZE	EZj1IO)BE:	/si=ł	148t	19eadkhXA7	w6			K5

	Construct the program by declare and initialize one-dimensional and two-dimensional	K1
CO3	arrays, as well as multi-dimensional arrays. To effectively use arrays in C	K2
0.05	programming to store and manipulate data. Arrays One Two AndMulti Dimensional	K3
	Arrays (learnloner.com). https://youtu.be/551-aZ7_F24?si=_V135pnU6s3DCrv2	K4,K6
	Comprehensive understanding of functions in C programming, which enable to write	K1
004	modular, reusable, and efficient code. To define and declare functions with proper syntax	K2
CO4	and understand return values and types.	K3
	https://youtu.be/puIK6kHcuqA?si=SNTxq546qR5vNVtg	K5
	To construct simple, well-structured C programs to solve numerical problems using flow	K1, K2
CO5	charts and algorithms. Also to write C programs to different numerical methods used in	K4,K5
005	Physics. https://youtu.be/FxGBoSr4UJw?si=7EtO-LjsO0woHf7p.	K6
	Text Books	
1	Programming in ANSI C, E. Balaguruswamy, "8th Edition, 2019, McGraw Hill Education	on,
1	ISBN: 978-93-5316-513-0.	
2	Numerical methods with Programs in C, T. Veerarajan, T.Ramachandran, 2 nd Edition, M	Ac Graw
	Hill (2015)	
3	C Programming for Problem Solving: 300+ solved Programs, Sharath Heggur, Clever Fo	X
5	Publishing, ISBN 939445733X	
	Reference Books	
1	Programming In C (2nd Ed.) - Ashok N. Kamthane - Pearson	
2	2. The C Programming Language - DENNIS M. RITCHIE- AT&T Bell Laboratories Mu	ırray
Ζ	Hill, New Jersey	
3	3. Let us C – (15th Ed.) - Yashwant Kanetkar - BPB Publications	
	Web Resources	
1	C Functions Tutorial : with Example Programs - YouTube	
2	https://www.geeksforgeeks.org/c-programming-language/	
3	https://www.learn-c.org/	
	DEFINITE INTEGRALS using SIMPSON'S 1/3rd RULE - C PROGRAM .	
4	https://www.youtube.com/watch?V=Hdpg3hHnlkw	
5	C Functions Tutorial : Programs- https://www.youtube.com/watch?v=J1vV1VDnCn0	

	MAPPING WITH PROGRAM OUTCOMES														
Strongl	Strongly Correlated - 3 Moderately Correlated - 2 Weakly Correlated - 1														
	PO 1 2 3 4 5 6 7 8 9 10														
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Communi cator	3 Critical thinker and problem solver	4 Sense of inquiry	Sense Team of player/		7 Digitall y Efficie nt	8 Ethical awarenes s/ reasoning	9 National and internationa l perspective	10 Lifelong learners					
CO1	3	1	1	1	-	-	2	1	1	1					
CO2	3	1	1	-	-	-	2	1	1	1					
CO3	3	1	1	1	-	-	2	1	-	1					
CO4	3		2	1	-	-	2	1	2	2					
CO5	3	1	3	1	1	-	2	2	2	2					
AVG	3	1	2	1	-	-	2	1	1	1					
TOTAL	15	4	8	4	1		10	6	6	7					

		S	ECO	ND Y	EAR	- SEMESTE	R – IV			
		l	METI	HOD	S OF	SPECTROS	COPY			
Course Code	Category Core/Ele/Sec	L	Т	Р	S	Credits	Inst. Hours	CIA	Marks ESE	Total
24PPYC1	1 Core - XI	5	-	-	1	5	6	25	75	100
				Lea	rning	g Objectives	-			
LO1 LO2	To make the student instrumentation tech To make the student	iniques		nd th	ne ba	sic concepts				
	based on their vibrat				-		-	1.2	c	, ,
L03	Upon successfully c					1		o interpret	a given sp	ectrum.
UNIT					Con	tents				No. of Hours
I	Microwave and Infra Microwave Spectros symmetric top molec spectrometer – Applic Infrared Spectrosco vibrating diatomic mo vibrations of CO ₂ and only).	copy: ules – ation – py: Vi lecule -	Classi Stark the ir bratio - diato	fication effectiversion nal entipomic r	on of $t - Q$ on spendent on spendent of the second secon	uadrupole hypectrum of amn of a diatomi	perfine interactionia. c molecule – f polyatomic r	ction – mic - selection nolecules –	rowave rules – normal	20
Ш	Raman Spectroscopy Raman effect – quan Raman effect – mutu spectroscopy – FT Ra stimulated Raman eff (CARS).	tum me al excl man sp	usion ectroi	princ neter	ciple – noi	– rotational sj n-linear Ramai	pectroscopy – n effects – hyp	vibration per Raman	rotation effect –	18
III	Electronic Spectrosc Electronic spectra o Vibrational coarse str Franck – Condon Prin – Techniques and inst	f diato ucture: ciple –	mic 1 Progr Disso	nolec ression	ns – I	ntensity of Vi	brational-Elec	tronic Spec	etra: the	16
IV	Spin Resonance Spec NMR spectroscopy: processes – Bloch equ ESR spectroscopy: T – hyperfine splitting radical, benzene anior	trosco Magne ations heory c – appli	py etic p – cher of ESF catior	nical R – co 1s – s	shift. mpar tructu	Applications - ison between l	- NMR imagir NMR and ESF	ng. R – instrume	entation	20
V	Surface Spectroscop Electron energy loss s – inelastic helium scat (UPES) – Auger elect	y pectros tering -	copy - phot	(EEL) oelect	S) – F tron sj AES)	pectroscopy (P – X-ray fluore	(ES) - X - ray	XPES) - ult	raviolet	16
			0			otal				90
00	0 1.1 0.1	•		rse C						K Level
CO CO1	On completion of the Classify molecules ba	sed on	their of	orient	ation.					K1 K2

	quadrupole interaction. Discuss the applications of microwave and FTIR spectroscopy.	K3
	Seminar: Compare IR with FTIR techniques and discuss the advantages of FTIR	K4
	techniques. E-	
	learning:https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Tex	
	tbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/	
	Rotational Spectroscopy/Microwave Rotational Spectroscopy;https://www.slideshare.net/c	
	dtpv/vibrational-spectroscopy; https://www.youtube.com/watch?v=QHkSh3WWKek [PO2,	
	PO 3]	
	Recollect Tyndall Effect. Discuss the classical and quantum theory of Raman Effect. Define	K1
	Mutual Exclusion Principle and make use of it to analyse the vibrational and Raman	K2
	activity of various molecules. Explain rotational and vibrational-rotational spectroscopy.	K3
CO2	Develop the theory of various kinds of Raman Effect – CARS. PowerPoint presentation –	K4
	Life History of Sir C.V. Raman Effect and discovery of Raman Effect. [PO2, PO3, PO7]E-	
	learning: https://www.sanfoundry.com/engineering-physics-questions-answers-raman-	
	effect/ [PO2, PO7]	
	Explain the electronic spectra of diatomic molecules. Determine the vibrational coarse	K1
	structure of diatomic molecules. Apply Franck Condan principle to determine the intensity	K2
	of vibrational – electronic spectra. Discuss the concept of dissociation energy and	K3
CO3	dissociation products. Extend the concept to study predissociation. Assignment :	K6
	Instrumentation techniques of electronic spectroscopy of molecules. Group Discussion on	110
	the modern ideas of molecular structure and the classification of electronic states	
	accordingly. (PO5)	
	Recall the concept of resonance. Apply it to understand NMR resonance condition. Discuss	K1
	Bloch Equation. Explain chemical shift and determine the chemical of some common	K1 K2
CO4	molecules. Compare the theory of NMR and ESR. Build the concept of hyperfine splitting.	K2 K3
04	Determination of g-value. PowerPoint Presentation (Group) on application of ESR in	K5 K5
	structural determination and biological studies. [PO 2, PO 5]	KJ
	Categorise the different types of surface spectroscopy (EELS, RAIRS, inelastic He	K1
	scattering). Perceive the energy transfer process in XPES, UPES and compare the two	K1 K2
CO5	processes. Discuss Auger electron spectroscopy and application of XRF. Group discussion :	K2 K4
	Breakthrough made by Bloch, Auger field of spectroscopy. [PO 2]	K4 K5
	Text Books	K.
		T TTT TX 7
1	Molecular structure and spectroscopy,G.Aruldhas, Prentice Hall, New Delhi (Unit I, I	11, 111, 1 V
2	NMR)	TT '/ TT
2		Unit II)
3	Spectroscopy, GurdeepChatwaal. (Unit IV- ESR Spectroscopy)	
	Reference Books	
1	Microwave Spectroscopy - Towns and Shallow, McGraw Hill.	
2	Scattering of light and Raman effect - Bhagavantham – Chemical Publishing Co	
2	Electronic spectra of diatomic and polyatomic molecules – Herzberg – Van Nostrand I	Reinhold
3	Co.	
	Web Resources	
1	https://en.wikipedia.org/wiki/Rotational_spectroscopy	
2	https://en.wikipedia.org/wiki/Infrared_spectroscopy	
3	https://www.slideshare.net/sherishahine/infrared-spectroscopy-32876736	
4	https://www.slideshare.net/ajamilan12/raman-spectroscopy-13063160	
5	https://www.chem.fsu.edu//10%20CHM%205710%20Vibrational%20spectroscopy.	
5	-100020571 w w w.chemi.isu.cuu//107020C11017020571070205710170205910100000000000000000000000000000000	

	MAPPING WITH PROGRAM OUTCOMES														
	Strongly Correlated - 3 Moderately Correlated - 2 Weakly Correlated - 1														
		PO													
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Communica tor	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	6 Skilled project manage r	7 Digitally Efficient	8 Ethical awarenes s/ reasonin g	9 National and internation al perspective	10 Lifelong learners					
CO1	3	2	1	1	1	-	2	1	3	2					
CO2	3	2	2	1	1	-	2	1	1	1					
CO3	3	2	1	1	1	-	2	1	-	1					
CO4	3	2	1	1	1	-	1	1	-	1					
CO5	3	2	3	1	1	1	1	1		1					
AVG	3	2	2	1	1		2	1	1	1					
TOT AL	15	10	8	5	5	1	8	5	4	6					

			SEC	CON	D YI	EAR - SEME	STER – IV				
		PH	IYSIC	CS O	F FU	INCTIONAL	MATERIAL	S			
	Category					Credits	Inst.		Marks		
Course Code	Category Core/Ele/ Sec	L	Т	Р	S		Hours	CIA	ESE	Total	
24PPYC12	Core -XII	5	-	-	1	5	6	25	75	100	
	Γ			L	leari	ning Objecti	ives				
L01	To acquire kn	owled	lge on	mat	erial	s properties	and their requ	uirement.			
LO2	To provide ba	sic kr	owled	dge a	abou	t nanoscience	e and nanoma	aterials.			
LO3	To acquire kn techniques. To smart material	o leari	-		•						
UNIT					Co	ntents			No. o	f Hours	
Ι	Materials Prop Need for the st property relation properties, Ma properties – Ma Engineering M	tudy o onship gnetic aterial	f mate : Mec prope select	erials hanic erties	prop cal p , Ph	perties – Leve roperties, The ysical and Cl	ermal propertion nemical prope	es, Electrical rties, optical		15	
II	Fundamentals Fundamentals Nanotechnolog Semiconductor Quantum dots - and MWCN- nanomaterials i	of N. 39 – 10 Nano 10 Quai 10 Surfa	ANO Clar omater ntum v nce eff	 H Ssific ials vires ffects 	listor catior - 2I – Qu s of	ical Perspect o of Nanor O, 1D, 0D r antum wells nano mater	ive on Nanor naterials – nanostructured –Carbon nanot	Metal and materials - tubes-SWCN		20	
Ш	Nanomaterials Top-down an Chemical vap electrochemic method - b Nanolithogram	nd bo bour d al dep all n	ttom- leposi positic nilling	tion on m g te	- so etho chni	l-gel – Wet d – Plasma a que - puls	deposition t arching - Elected and laser de	echniques - ctrospinning	15		
IV	Nanolithography: photolithography – Nanomanipulator.Advanced Characterization Techniques of MaterialsPowder X-ray diffraction –EDAX- X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence –Fourier Transform Infrared Spectroscopy - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) –HRTEM- Scanning probe microscopy (SPM) - Scanning tunnelling microscopy (STM) – Vibrating sample Magnetometer (VSM).20									20	
V	New Materials Metallic glasses and their applications – Surface Acoustic Wave (SAW) materials and their applications – Biomaterials – Ceramic materials – High- temperature materials – Electrets and their applications - Nuclear engineering 20 materials and their classification – Intermetallic compounds and their applications - Shape memory alloys – SMART materials – Classification of Smart materials.										
					Г	otal			9	0	

	Course Outcomes	K Level
CO	On completion of this course, students will	
CO1	 Remember about materials properties. List down the various requisite properties. Learn about engineering materials and their classification- Elucidate selection of engineering materials forapplications with proper examples with students. (K4, PO2, PO4, PO5, PO9, PO10) 	K1, K2, K3, K4
CO2	 Remember Nano particles, nano materials. Explain knowledge about various classifications of nano materials. Elucidate carbon nano tubes with types and application in various fields with appropriate examples. (K6, PO2, PO3, PO4, PO5, PO9, PO10) 	K1, K2, K3, K4, K5
CO3	Listout top down and bottom up approach Explain the basic principle, methodology and instrumentation of various deposition and lithographic techniques.(Seminar- PPT) (K3, PO2, PO3, PO4, PO5, PO7, PO9) PO10)	K1, K2, K3, K4
CO4	Learn X-Ray diffraction, study about various microscopy and spectroscopy techniques like Electron microscopy, scanning electron microscope (SEM), Transmission electron microscope (TEM), Absorption spectroscopy (UV) -Photoluminescence (PL). Fourier Transform Infra-red (FTIR) spectroscopy and Vibrating sample Magnetometer (VSM)(K5, PO2, PO3, PO4, PO5, PO6, PO7,PO9, PO10)	K1, K2,K3, K4, K5,
CO5	Define Metallic glasses. Outline Surface Acoustic Materials (SAM) and Applications. Learn Bio and Ceramic materials – Electrets, Nuclear Engineering Materials, shape memory alloys and find out SMART materials. (PO 9) (PPT-seminar) (PO2,PO3, PO4, PO7,PO9, PO 10) https://engineering.jhu.edu/materials/research-projects/metallic-	K1, K2, K3, K4, K6
	glasses/	
	Text Books	
1	A Textbook of Materials Science – V. Rajendran – McGraw Hill Publisher – 6 ^t	
2	A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGr Co. 2012 (Unit II).	
3	A Textbook of Principles of Nanoscience and Nanotechnology, M.A. Sh Narosa Publishing House Pvt Ltd., 2010 (Unit III and Unit V).	ah, Tokeer Ahmad,
	Reference Books	
1	V. Raghavan, 2003, Materials Science and Engineering, 6 th Edition, Prer Delhi	ntice- Hall India, New
2	G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata	McGraw-Hill
3	B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbool Nanotechnology. Springer- Verlag, 2012.	
	Web Resources	
1	https://onlinecourses.nptel.ac.in/noc20_mm02/preview	
2	https://nptel.ac.in/courses/112104229	
3	https://archive.nptel.ac.in/courses/113/105/113105081	
4	https://nptel.ac.in/courses/113/105/113105025/	
5	https://eng.libretexts.org/Bookshelves/Materials_Science/Supplementa s Science)/Electronic Properties/Lattice Vibrations	al_Modules_(Material

		М	APPING WIT	TH PROG	RAM OUT	COMES							
Stron	Strongly Correlated - 3 Moderately Correlated - 2 Weakly Correlated - 1												
CO / PO	1 2 Disciplinary Skill Knowledge and Com skills nica		3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	7 Digitall y Efficien t	8 Ethical awaren ess/ reasoni ng	9 National and internati onal perspecti ve	10 Lifelong learners				
CO1	3	2	1	1	-	-	-		1	1			
CO2	3	2	2	1	1	-	-	-	1	1			
CO3	3	2	1	1	1	-	1	-	1	1			
CO4	3	2	2	1	-	1	1	-	1	1			
CO5	3	2	2	1	-		1	-	1	1			
AVG	3	2	1	1	1	1	1	-	1	1			
TOTAL	15	10	9	5	3	2	4	_	5	5			

			SE	CON	ND Y	YEA	R	- SEMESTE	R – IV	7			
PRA	CTICA	ALS IV-MICROPI	ROC	CESS	SOR	R, M	10	CROCONTI	ROLI	LER A	ND C PI	ROGRAM	MING
Cou	rse	Category	L	Т	Р		S	Credits		st.		Marks	
Cod	le	Core/Ele/Sec	L	1	Г	,	3		Ho	ours	CIA	ESE	Total
24PPY	'C13	Core - XIII	-	-	6		•	5	(6	25	75	100
L01		e simple programs xecute them.	to i				<u> </u>	Objectives ware to mice	roproc	cessor	8085, m	icrocontro	ller 8051,
LO2		C programs for nu	meri	cal r	neth	nods	p	roblems and	learn	Spread	lsheet too	ol for analy	sis
LO3		rstand the concept of					-			-			
UNIT				nten			. 1	8	I ·			of Hours	
UNII	C01		Co		15								
		9005	L L A	•••		(1		Gallet and the					
		croprocessor 8085–						y, Sudtractio	on				
		borrow, Multiplicat						soonding ord	or				
Ι		st and smallest using			U		163		сі,			12	
•	•	croprocessor 8085–					R	inary to BCI)				
		croprocessor 8085				•		•					
		s, sum of n numbers		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, " "	1001		, i uutu, i 1001	14001				
	CO2	,											
II		cro controller 8051 - ïbonacci series	– As	cenc	ling	and	d	escending or	der				
		cro controller 8051 move.	– Sr	nalle	est, l	Larg	ges	st in an array	and			24	
		terfacing PLC to eff ocontroller 8051	fect	traffi	ic si	gnal	W	vith					
	8.Inte	erfacing stepper mot	tor w	vith 1	micr	000	ntı	roller 8051					
III	blink	erfacing PLC to d ing of LED in Port mod counterwith µ	A a	nd P				-				18	
	press	terfacing external ke and to affect a blin al LED display wit	king	and	roll	ing	of	message in t	he			10	
	11. In	terfacing ADC with	h μP	808	5.							18	

IV	12.Interfacing DAC to generate waves with µP8085	
	13.Scilab-Simple experiments (Demonstration)	
	14. Programming in C- Newton - Raphson method- four roots- verification by MS-EXCEL / manual Calculation.	
V	15. Programming in C- Trapezoidal rule	
	16. Programming in C- Simpson's 1/3 and 3/8 rules - verification by MS-EXCEL / manual Calculation.	
	17. Programming in C - Newton's forward and backward interpolation- verification by MS-EXCEL / manual Calculation.	18
	18. Programming in C- Runge-Kutta method – verification by MS-EXCEL / manual Calculation.	
	19. Programming in C- Euler's modified method	
	Total	90
	Course Outcomes	K Level
CO	On completion of this course, students will	
CO1	Evoke the instructions set for microprocessor 8085, understand operations of a microprocessor, develop logic to solve simple problems,	K1,K2,K3, K4,K6
CO2	Recall the concepts of interfacing a microcontroller 8051 and realize the execution through mnemonics, understand operations of a microcontroller and its applications, apply logic in finding codes for input, examine and creatively build codes allowing the possibility of the desired task. (PPT for group seminar – all expts)(Students are allowed to build codes for different schemes in traffic controller – [PO3]) (Interactive session with questions) (Viva – Voce in IA) [PO2]	K1,K2,K3, K4,K5, K6
CO3	Evoke the instructions set for microprocessor 8085, understand operations of a microprocessor, develop logic to solve simple problems, apply them to complex systems like keyboard interfacing and analyse graphically. (Interactive session with questions) (Viva – Voce in IA) [PO2].	K1,K2,K3,K5,K6
	Keep in mind the concept of combinational circuits, DAC,	K1,K2,K3,K4 ,K5,K6
CO4	ADC operations, creatively evaluate [PO3]	
CO5	Remember all the syntaxes in C [PO7], understand the computational tools [PO7], apply basic mathematical concepts in Evaluate [PO3] the input data for a program, type, save, run, debug program, send email, take print outs [PO7], execute the same calculations with EXCEL [PO7], analyse the results[PO7][PO10]and time-share systems. (Interactive session with questions) (Viva – Voce in IA) [PO2].	K1,K2,K3,K4,K5

		Ν	AAPPING WI	TH PROG	RAM OU	TCOMES						
Stro	Strongly Correlated - 3 Moderately Correlated - 2 Weakly Correlated - 1											
				Р								
CO / PO	1 Disciplinary Knowledge and skills	2 Skilled Commu nicator	3 Critical thinker and problem solver	4 Sense of inquiry	5 Team player/ worker	7 Digitally Efficient	8 9 Ethical awaren ess/ reasoni ng		10 Lifelong learners			
CO1	3	2	2	2	2	1	2	1	1	1		
CO2	3	2	2	2	2	1	3	1	1	1		
CO3	3	2	2	2	2	1	1	1	1	1		
CO4	3	2	1	1	2	1	1	1	1	1		
CO5	3	2	1	2	2	1	2	1	1	1		
AVG	3	2	2	2	2	1	2	1	1	1		
TOTAL	15	10	8	9	10	5	9	5	5	5		

SECONDYEAR - SEMESTER – I											
PROJECT											
~ ~ .	Category					Credits	Inst.	Marks			
Course Code	Category Core/Ele/Sec		Т	Р	S		Hours	CIA	ESE	Total	
24PPYC14	24PPYC14 Core - XIV 6 5 6 25 75 100										

Learning objectives and course outcome

- 1. Project paper 90 hours of experimental or theoretical work, deriving scientific results and analysis and interpretation of the results.
- 2. The project work must be original and independent research by the student.
- 3. Two copies of the project report and also soft copy of the same should be submitted at the end of the term.
- 4. The maximum length of the report should not exceed 30 pages (typed matter: Times New Roman font size 12 and 1.5 line spacing) excluding bibliography, tables, diagrams and annexure.
- 5. A certificate from the supervisor under whom the candidate worked that the report submitted is a record of research work done during the period of study under her and that report has not formed the basis for the award to the candidate of any degree, diploma, Associateship, fellowship or other similar titles should be provided.
- 6. A viva (Oral examination) will be conducted on the project work at the end of the term.

		РО												
CO/PO	1 Disciplinary Knowledge and skills	2 Skilled Communicator	3 Critical thinker and problem solver	4 Sense of	5 Team player/worker	6 Skilled project manager	7 Digitally Efficient	8 Ethical awareness / reasoning	9 National and international perspective	10 Lifelong learners				
CO1	3	2	1	1	-	2	1	1	1	1				
CO2	3	2	1	1	-	2	1	1	1	1				
CO3	3	3	1	1	-	2	2	1	1	1				
CO4	3	2	1	1	-	2	1	1	1	1				
CO5	3	2	1	1	-	1	2	1	1	1				
Avg	3	3	1	1	-		1	1	1	1				
Total	15	13	5	5	-	1	7	5	5	5				

				SE	CON	DY	EAR – SEME	ESTER -IV			
		BASICS O	FAF	RTIF	ICIA	LI	NTELLIGEN	CE AND DA	ATA SC	CIENCE	
COUR COD	DE CORE/ELE/ L T P S CREDITS HOURS										
		SEC							CIA	ESE	TOTAL
24PPY	S03	SEC - III	2	-	-	-	2	2	25	75	100
					LEA	ARN	ING OBJEC	ΓIVES			
LO1		sp the basics of Da dational principle		cienc	e, Ma	achir	ne Learning, D	eep Learning	, and A	I, including their	history and
LO2		rn techniques for vant tools.	data	hand	lling	, pre	eprocessing, st	atistical infe	rence, a	and data visualiza	ation using
LO3		n practical knowle ly the applications									
UNIT						C	CONTENTS		-		NO. OF HOURS
Ι	I Data Science Data Science and Data Analysis - Perspectives of data science _ Statistical inference - Populations and samples - Types of data - Attributes and measurement - Data Visualization - Process/workflow -Importance of visualization in data science - Types of Data visualization - Data visualization tools - Use cases of data science visualization - Applications of data science							6			
Π	AI Foundations and Applications Definition and Scope of AI - History and Evolution of AI - Types of AI: Narrow, General, and Superintelligent AI - Basic Foundations of AI - Future Technology Trends - Societal and Ethical Implications of AI - Applications of AI in Various Industries								6		
III	Ethical Implications of AI -Applications of AI in Various Industries.AI SubfieldsComputer vision: Object detection – Facial recognition – Medical imaging – Applications of computer vision - Natural language processing: Text classification – Machine translation – Text generation and summarization - Machine learning : classification regression and clustering- Deep learning as a special case of machine learning – Robotics: component of a							6			
IV	 robot – Types of robots. Industrial Applications of AI AI in healthcare: Medical diagnosis - drug discovery and development - virtual medical assistant - challenges of AI in healthcare -AI in agriculture: Precision farming - crop monitoring and management - smart irrigation systems-AI in education: Personalized learning - administrative tasks - AI based language processing tools -AI in transportation: Traffic management and optimization- Ride sharing and mobility services - Safety and Security – Challenges. 									6	
V	AI in AI in and ineq AI H and Rese	n Research, Generation n Astro Physics at prompt engineer uality. Projects and Futu	erativ nd sp ing - ure T AI P Pract nds in	ace - Eme rend rojec ical n AI:	App ergin s ts: C Usag Qua	g tre ase ; ge of ntum	ends and futur Studies and Ex f Generative A n Computing, H	amples - AI Tools to Edge AI.	in AI for Sci Advanc	- Al and social ence, Humanity, e Learning and	6

co	COURSE OUTCOMES At the end of the course, the student will be able to	K LEV EL
C01	Explain the perspectives and significance of data science - Perform statistical inference and differentiate between populations and samples - Identify different types of data and their attributes - Visualize data using appropriate techniques and tools - Apply data visualization in various use cases and understand its role in data science. Activity – 1: Discussion with https://www.youtube.com/watch?v=pKeVMlkFpRc&list=PLwdnzlV3ogoXaceHrrFVZCJKbm https://www.youtube.com/watch?v=GHpchgLoDvI&list=PL9WZXVlcfHbQ15yg2YwXqSNL6yddM_Out(PO1, PO2, PO3, PO4, PO5, PO7, PO9, PO10)	K1 K2 K3 K5
C02	Define and explain the scope and history of AI - Differentiate between narrow, general, and superintelligent AI - Discuss the basic foundations and future technology trends in AI - Analyze the societal and ethical implications of AI - Identify and describe the applications of AI in different industries. Activity 2:Question session with (PO1, PO2, PO3, PO4, PO5, PO7, PO9, PO10) <u>https://www.youtube.com/watch?v=K9gH7hBAdpo&list=PL9WZXVlcfHbQ15yg2Yw</u> <u>XqSNL6vddM_Out&index=2</u>	K1 K2 K3 K4 K5
C03	Explain the concepts and applications of computer vision, natural language processing, and machine learning - Implement techniques such as object detection, facial recognition, and text classification - Differentiate between various types of robots and their components - Understand the role of deep learning as a special case of machine learning - Apply AI techniques to solve real-world problems in various subfields. Activity-3:Seminar – PPT based on <u>https://www.youtube.com/watch?v=a4yd0Au8QLg&list=PLyqSpQzTE6M8X3Veh5ijSQ2UG</u> <u>FFEZIpKf</u> (PO1, PO2, PO3, PO4, PO5, PO7, PO9, PO10)	K1 K2 K3 K4 K5
C04	Identify and describe the applications of AI in healthcare, agriculture, education, and transportation - Discuss the challenges and benefits of AI in these industries - Analyze case studies and examples of AI implementation in various sectors - Apply AI techniques to industry-specific problems. Activity-4: Group Discussion on (PO1, PO2, PO3, PO4, PO5, PO7, PO9, PO10) <u>https://www.youtube.com/watch?v=mmBOZCvX7wo&list=PLyqSpQzTE6M8X3Veh5ijSQ2</u> <u>UGFFEZIpKf&index=9</u>	K1 K2 K3 K4 K5 K6
C05	Explain the applications of AI in research areas like astrophysics and particle physics - Understand and implement generative AI techniques, including prompt engineering with ChatGPT - Identify emerging trends and future directions in AI - Discuss the societal impacts and ethical considerations of AI - Prepare for a career in AI by working on practical AI projects and staying updated with future trends.Activity – 5: simple Project using generative AI (PO1, PO2, PO3, PO4, PO5, PO7, PO9, PO10)	K1 K2 K3 K5 K6

	TEXT BOOKS										
1.	Data Science and Artificial intelligence -Renuka Jha - Yking books (Unit -1), 2024.										
2.	 AI for Everyone: A Beginner's Handbook for Artificial Intelligence (AI) by SaptarsiGoswami, Amit Kumar, Amlan, Pearson – 2024 – Edition. Chapter 2: Machine Learning Basics, Chapter 3: Data Handling and Preprocessing(Unit – 2); Chapter 4: Neural Networks and Deep Learning(Unit – 3); Chapter 5: AI in Practice and Future Trends (Unit – 4); Chapter 5: AI in Practice and Future Trends:(Unit – 5) 										
3.	Artificial Intelligence & Generative AI for Beginners by David M. Patel – 2023 Edition.										
	REFERENCE BOOKS										
1.	Introduction to Generative AI by Numa Dhamani, Manning publications										
2.	Data Science using Python: A Step-by-Step Practical Approach for Beginners by Dr Vishal Goyal										
	e-RESOURCES										

	E-RESOURCES								
1	Google course: https://www.cloudskillsboost.google/paths/118								
2.	Microsoft course :https://learn.microsoft.com/en-us/training/modules/fundamentals- generative-ai/								
3.	Generative AI course for beginners :https://microsoft.github.io/generative-ai-for-beginners/#/								
4.	https://www.coursera.org/learn/ai-for-everyone								
5.	https://www.tensorflow.org/tutorials								

		РО												
СО/РО	1 Disciplinary Knowledge and skills	2 Skilled Communicator	3 Critical thinker and problem solver	4 Sense of	5 Team player/worker	6 Skilled project manager	7 Digitally Efficient	8 Ethical awareness / reasoning	9 National and international perspective	10 Lifelong learners				
CO1	3	2	1	1	1		1	1	1	1				
CO2	3	2	1	1	1		1	1	1	1				
CO3	3	3	1	1	1		2	1	1	1				
CO4	3	2	1	1	1		1	1	1	1				
CO5	3	2	1	1	1	1	2	1	1	1				
Avg	3	3	1	1	1		1	1	1	1				
Total	15	13	5	5	5	1	7	5	5	5				

	SECOND YEAR – SEMESTER -IV										
	INDUSTRIAL TRAINING										
COURSE CODE		CATEGORY CORE / ELE /	L	Т	Р	s	CREDITS	TOTAL HOURS	MARKS		
000		SEC						moord	CIA	ESE	TOTAL
24PPY	E4A	DSE - IV	-	-	5	-	3	5	25	75	100
	LEARNING OBJECTIVES										
LO1	Tog	get an exposure to	the r	ole o	f Phy	sics	in industries				
LO2	This	will be a platform	n for	entre	prene	eursh	nip				
LO3	Stud	lents will gain lead	dersh	ip qu	ality	and	this ensures ca	pacity buildi	ng		
СО	A MINIMUM OF 60 HOURS TRAINING AT ANY LEADING INDUSTRY OF STUDENT'S CHOICE. THIS SHOULD BE FOLLOWED BY A REPORT AND A PRESENTATION.									75 HOURS	

SECOND YEAR – SEMESTER -IV												
	SELF LEARNING											
COUR COD		CATEGORY CORE / ELE /	L	Т	Р	s	CREDITS	TOTAL HOURS	MARKS			
		SEC							CIA	ESE	TOTAL	
24PPY	E4B	DSE - IV	-	-	5	-	3	5	25	75	100	
	LEARNING OBJECTIVES											
LO1	1 TO CHOOSE A COURSE OF STUDENTS CHOICE AND INTEREST, HER ORIGINAL TH WILL IMPROVE									HINKING		
LO2	SEL	SELF LEARNING WILL HELP STUDENT TO IMPROVE INQUIRY SKILLS										
LO3	THI	S WILL IMPROV	/E HI	ER SI	ELF (CON	FIDENCE AN	ID ALSO CF	REATE LI	IKING TO THE	SUBJECT	
СО	STUDENTS CAN DO ANY COURSE RELATED TO PHYSICS THROUGH MOOC NPTEL SWAYAM										75 HOURS	